bzoj 1196: [HNOI2006]公路修建问题

Description

OI island是一个非常漂亮的岛屿,自开发以来,到这儿来旅游的人很多。然而,由于该岛屿刚刚开发不久,所以那里的交通情况还是很糟糕。所以,OIER Association组织成立了,旨在建立OI island的交通系统。 OI island有n个旅游景点,不妨将它们从1到n标号。现在,OIER Association需要修公路将这些景点连接起来。一条公路连接两个景点。公路有,不妨称它们为一级公路和二级公路。一级公路上的车速快,但是修路的花费要大一些。 OIER Association打算修n-1条公路将这些景点连接起来(使得任意两个景点之间都会有一条路径)。为了保证公路系统的效率, OIER Association希望在这n-1条公路之中,至少有k条(0≤k≤n-1)一级公路。OIER Association也不希望为一条公路花费的钱。所以,他们希望在满足上述条件的情况下,花费最多的一条公路的花费尽可能的少。而你的任务就是,在给定一些可能修建的公路的情况下,选择n-1条公路,满足上面的条件。

Input

第一行有三个数n(1≤n≤10000),k(0≤k≤n-1),m(n-1≤m≤20000),这些数之间用空格分开。 N和k如前所述,m表示有m对景点之间可以修公路。以下的m-1行,每一行有4个正整数a,b,c1,c2 (1≤a,b≤n,a≠b,1≤c2≤c1≤30000)表示在景点a与b 之间可以修公路,如果修一级公路,则需要c1的花费,如果修二级公路,则需要c2的花费。

Output

一个数据,表示花费最大的公路的花费。

这道题的答案单调性是比较明显的,所以我们可以采用二分答案的策略,那么我们二分 枚举最大的费用\(v\)再尝试判断是否能连通就可以了,且一级公路优先,不过这里有第 一点需要注意,因为两点之间可能存在不同的边连通,所以我们要分别去将一级公路与二级公路连通.因为两点之间可能会有你已经连过一条二级公路而实际上它可以连一级公路的情况.所以我们需要优先处理一级公路就可以避免这种麻烦了.

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; static const int maxm=1e6+10; struct Edge{
int x,y,val1,val2;
bool operator < (const Edge &E)const{
return val2<E.val2;
}
}edge[maxm]; int val[maxm],ftr[maxm];
int n,m,k,ans; int find(int x){
return x==ftr[x]?x:ftr[x]=find(ftr[x]);
} void unionn(int x,int y,int &d){
x=find(x);y=find(y);
if(x!=y)ftr[x]=y,d++;
} bool check(int MAX){
int cnt=0;int num=0;
for(int i=1;i<=n;i++)ftr[i]=i; for(int i=1;i<m;i++)
if(edge[i].val1<=MAX&&find(edge[i].x)!=find(edge[i].y))
unionn(edge[i].x,edge[i].y,num); if(num<k)return false; for(int i=1;i<m;i++)
if(edge[i].val2<=MAX&&find(edge[i].x)!=find(edge[i].y))
unionn(edge[i].x,edge[i].y,num); if(num<n-1)return false; return true;
} int main(){
int l=1,r=20011025;
scanf("%d%d%d",&n,&k,&m);
for(int i=1;i<m;i++)
scanf("%d%d%d%d",&edge[i].x,&edge[i].y,&edge[i].val1,&edge[i].val2); while(l<=r){
int mid=(l+r)>>1;
if(check(mid))r=mid-1,ans=mid;
else l=mid+1;
} printf("%d\n",ans); return 0;
}

点我进入AC通道

bzoj 1196 公路修建问题的更多相关文章

  1. BZOJ 1196 公路修建问题(二分+最小生成树)

    题目要求求出图中的一颗生成树,使得最大的边权最小,且满足一级公路的个数>=k. 考虑二分最大边,问题就变为给出的图的生成树中,是否满足所有的边<=val,且一级公路的个数>=k. 所 ...

  2. 【最小生成树】BZOJ 1196: [HNOI2006]公路修建问题

    1196: [HNOI2006]公路修建问题 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1435  Solved: 810[Submit][Sta ...

  3. bzoj 1196: [HNOI2006]公路修建问题 二分+并查集

    题目链接 1196: [HNOI2006]公路修建问题 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1576  Solved: 909[Submit ...

  4. BZOJ 1196: [HNOI2006]公路修建问题( MST )

    水题... 容易发现花费最大最小即是求 MST 将每条边拆成一级 , 二级两条 , 然后跑 MST . 跑 MST 时 , 要先加 k 条一级road , 保证满足题意 , 然后再跑普通的 MST . ...

  5. BZOJ 1196: [HNOI2006]公路修建问题 Kruskal/二分

    1196: [HNOI2006]公路修建问题 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  6. 1196/P2323: [HNOI2006]公路修建问题

    1196: [HNOI2006]公路修建问题 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2191  Solved: 1258 Descriptio ...

  7. BZOJ-1196 公路修建问题 最小生成树Kruskal+(二分??)

    题目中一句话,最大费用最小,这么明显的二分的提示(by 以前morestep学长的经验传授)...但完全没二分,1A后感觉很虚.. 1196: [HNOI2006]公路修建问题 Time Limit: ...

  8. BZOJ_1196_[HNOI2006]公路修建问题_kruskal+二分答案

    BZOJ_1196_[HNOI2006]公路修建问题_kruskal+二分答案 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1196 分析: ...

  9. COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解

    大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...

随机推荐

  1. AddDbContext was called with configuration, but the context type 'NewsContext' only declares a parameterless constructor?

    问题 An error occurred while starting the application. ArgumentException: AddDbContext was called with ...

  2. Oracle SQL语句性能优化方法大全

    Oracle SQL语句性能优化方法大全 下面列举一些工作中常常会碰到的Oracle的SQL语句优化方法: 1.SQL语句尽量用大写的: 因为oracle总是先解析SQL语句,把小写的字母转换成大写的 ...

  3. 【期望dp】bzoj4832: [Lydsy1704月赛]抵制克苏恩

    这个题面怎么这么歧义…… Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一 ...

  4. ccf 201803-4 棋局评估(Python实现)

    一.原题 问题描述 试题编号: 201803-4 试题名称: 棋局评估 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 Alice和Bob正在玩井字棋游戏. 井字棋游戏的规则很 ...

  5. 【laravel】【转发】laravel 导入导出excel文档

    1.简介 Laravel Excel 在 Laravel 5 中集成 PHPOffice 套件中的 PHPExcel ,从而方便我们以优雅的.富有表现力的代码实现Excel/CSV文件的导入和 导出  ...

  6. Yii2 基于rbac访问控制

    Yii2 是一款非常强大的PHP底层框架, 牛b的人都喜欢用它, 有时候你们可能会发现, Yii2 底层处理不是很好, 比如: 每次分页, yii底层都会多统计一次数据的总条数!  那只能说你对它还不 ...

  7. kafka的初认识

    学习地址: http://www.jikexueyuan.com/course/1716_3.html?ss=1 http://www.jikexueyuan.com/course/kafka/ zo ...

  8. python爬虫基础12-selenium大全6/8-等待

    Selenium笔记(6)等待 本文集链接:https://www.jianshu.com/nb/25338984 简介 在selenium操作浏览器的过程中,每一次请求url,selenium都会等 ...

  9. Python中的端口协议之基于UDP协议的通信传输

    UDP协议: 1.python中基于udp协议的客户端与服务端通信简单过程实现 2.udp协议的一些特点(与tcp协议的比较)        3.利用socketserver模块实现udp传输协议的并 ...

  10. SpringMVC总结以及在面试中的一些问题.

    1.简单的谈一下SpringMVC的工作流程? 流程 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理 ...