Parallel Database for OLTP and OLAP

Just a
survey article on materials on parallel database products and
technologies for OLTP/OLAP applications. It mainly covers major
commercial/academic efforts on developing parallel dbms to solve the
ever growing large amount of relational data processing problem.
  
Part I – Parallel DBMSs

1.1 Parallel Database for OLAP (Shared-Nothing/MPP)

TeraData
– TeraData Home
– Teradata DBC/1012 Paper
– NCR Teradata VS Oracle Exadata (Teradata’s perspective)

Vertica
– Vertica Home
– The original research project: C-Strore

Paraccel
– Paraccel Home
– MPP Based Architecture
– Columnar Based Storage 
– Flash Based Storage

DataLlegro(now MS Madison)
– Design Choices in MPP Data Warehousing Lessons from DATAllegro V3
– Microsoft SQL Server Parallel Data Warehousing

Netezza
– Netezza Home
– Acquired by IBM
– Hadoop & Netezza: Synergy in Data Analytics (Part 1Part 2)  
– Netezza Twinfin VS Oracle Exadata (eBookBlog, Netezza’s perspective)

GreenPlum:
– GreenPlum Home 
– Combined: PostGreSQL/ZFS/MapReduce 
– Acquired by EMC

Oracle ExaData:
– ExaData Home (Technical OverviewWhite Paper)
>> – OLTP & OLAP Hybrid Orientation
>> – 1 * RAC + N * Exadata Cells (Storage Node) + Infiniband Network
>> – Exadata Cell: Flash Cache + Disk Array + Data Filtering Logic (partial SQL execution)
– Oracle Exadata VS Netezza TwinFin (Oracle Engineer’s perspective)

IBM DB2 Data Partitioning Feature (can work with both OLAP/OLTP)
– formerly known as DB2 Parallel Edition (An Shorter Overview)
– DB2 At a Glance – Data Partitioning Feature
– Simulating Massively Parallel Database Processing on Linux

AsterData: 
– Supercharging Analytics with SQL-MapReduce
– Aster Data brings Applications inside an MPP Database

Misc Articles:
– What’s MPP? 
– Comparison of Oracle to IBM DB2 UDB and NCR Teradata for Data Warehousing
– SMP or MPP for Data Warehouse
– Dividing the data Warehousing work among MPP Nodes
– SANs vs. DAS in MPP data Warehousing
– Three ways Oracle or Microsoft could go MPP

1.2 Parallel Database for OLTP (Shared-Disk/SMP)

Oracle Real Application Cluster
– Oracle RAC Concepts
– Oracle Parallel Database Server Concepts
– Oracle RAC Case Study on 16-Node Linux Cluster

IBM DB2 for z/OS (with Sysplex Technology)
– Share Disk and Share Nothing for IBM DB2
– What’s DB2 Data Sharing?

IBM DB2 for LUW (with pureScale Technology)
– IBM DB2 pureScale: The Next Big Thing or a Solution Looking for a Problem?
– What is DB2 pureScale?
– DB2 pureScale Scalability (section 1section 2)

Part II – Academic Readings

2.1 Overview
1). Parallel Database System: The Future of High Performance Database Processing
2). Survey of Architecture of Parallel Database System
3). The Case for Shared Nothing
4). Much Ado About Shared-Nothing

2.2 Research System
1). XPS: A High Performance Parallel Database Server
2). The Design of XPRS
3). Prototyping Buuba, H High Parallel Database System
4). The Gamma Database Machine Project
5). NonStop SQL, A Distributed, High-Performance, High-Availability Implementation of SQL
6). Parallel Query Processing in Shared Disk Database System
7). Architecture of SDC, the Super Database Computer

2.3 Commercial System
1). A Study of A Parallel Database Machine and Its Performance – The NCR/TERADATA DBC/1012
2). A Practical Implementation of the Database Machine – Teradata DBC/1012
3). DB2 Parallel Edition
4). Parallel SQL Execution in Oracle 10g
6). Shared Cache – The Future of Parallel Database
7). Cache Fusion: Extending Shared-Disk Clusters with Shared Caches

Parallel Database for OLTP and OLAP的更多相关文章

  1. OLTP与OLAP的介绍

    OLTP与OLAP的介绍 数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing).联机分析处理OLAP(On-Line Analytical ...

  2. OLTP与OLAP比较【转】

    OLTP与OLAP的介绍 数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing).联机分析处理OLAP(On-Line Analytical ...

  3. OLTP和OLAP

    1 OLTP和OLAP online transaction processing,联机事务处理.业务类系统主要供基层人员使用,进行一线业务操作,通常被称为联机事务处理. online analyti ...

  4. OLTP与OLAP的介绍(理论知识)

    OLTP与OLAP的介绍 数据处理大致可以分成两大类:联机事务处理OLTP(on-line transaction processing).联机分析处理OLAP(On-Line Analytical ...

  5. OLTP与OLAP分析与比较

    (本文转载自Super_Mu的博客https://www.cnblogs.com/hhandbibi/p/7118740.html) 1.OLTP与OLAP的介绍 数据处理大致可以分成两大类:联机事务 ...

  6. OLTP与OLAP的差异

    OLTP与OLAP的差异 系统类型 OLTP(在线交易系统) OLAP(联机分析系统),DW(数据仓库) 数据来源 操作数据,OLTP通常是原始性数据源 联合型数据:OLAP数据来源于其他OLTP系统 ...

  7. OLTP和OLAP的区别

    OLTP和OLAP的区别 联机事务处理OLTP(on-line transaction processing) 主要是执行基本日常的事务处理,比如数据库记录的增删查改.比如在银行的一笔交易记录,就是一 ...

  8. OLTP与OLAP的区别

    OLTP和OLAP的区别 联机事务处理OLTP(on-line transaction processing) 主要是执行基本日常的事务处理,比如数据库记录的增删查改.比如在银行的一笔交易记录,就是一 ...

  9. [转帖]OLTP、OLAP与HTAP

    OLTP.OLAP与HTAP https://blog.csdn.net/ZG_24/article/details/87854982   OLTP On-Line Transaction Proce ...

随机推荐

  1. 2018 Multi-University Training Contest 1 Balanced Sequence(贪心)

    题意: t组测试数据,每组数据有 n 个只由 '(' 和 ')' 构成的括号串. 要求把这 n 个串排序然后组成一个大的括号串,使得能够匹配的括号数最多. 如()()答案能够匹配的括号数是 4,(() ...

  2. HDU 4738 双连通分量 Caocao's Bridges

    求权值最小的桥,考虑几种特殊情况: 图本身不连通,那么就不用派人去了 图的边双连通分量只有一个,答案是-1 桥的最小权值是0,但是也要派一个人过去 #include <iostream> ...

  3. Python类元编程

    类元编程是指在运行时创建或定制类.在Python中,类是一等对象,因此任何时候都可以使用函数创建新类,而无需用class关键字.类装饰器也是函数,不过能够审查.修改,甚至把被装饰的类替换成其他类.元类 ...

  4. Android工具 Hierarchy Viewer 分析

    Hierarchy Viewer是随AndroidSDK发布的工具,位置在tools文件夹下,名为hierarchyviewer.bat.它是Android自带的非常有用而且使用简单的工具,可以帮助我 ...

  5. MongoDB学习-->Gridfs分布式存储&DBRef关联查询

    mongodb自带的一个分布式文件系统 fs.files _id filename md5 size uploaddate contenttype metadata {"user_id&qu ...

  6. 零基础学习 Python 之前期准备

    写在之前 从今天开始,我将开始新的篇章 -- 零基础学习 Python,在这里我将从最基本的 Python 写起,然后再慢慢涉及到高阶以及具体应用方面.我是完全自学的 Python,所以很是明白自学对 ...

  7. change login screen wallpaper on ubuntu14.04

    install lightdm-gtk-greeter $ apt-get install lightdm config lightdm $ vim /etc/lightdm/lightdm-gtk- ...

  8. iOS开发笔记--UILabel的相关属性设置

    在iOS编程中UILabel是一个常用的控件,下面分享一下UILabel的相关属性设置的方法. 很多学习iOS6编程都是从storyboard开始,用到UILabel时是将控件拖到storyboard ...

  9. 【bzoj2081】[Poi2010]Beads Hash

    题目描述 Zxl有一次决定制造一条项链,她以非常便宜的价格买了一长条鲜艳的珊瑚珠子,她现在也有一个机器,能把这条珠子切成很多块(子串),每块有k(k>0)个珠子,如果这条珠子的长度不是k的倍数, ...

  10. iOS-跨界面传值和跨应用传值

    跨界面传值 从一个界面将一个结果值传到另一个界面,这个是我们在开发过程中非常常见的一个问题.传值本身并不是一个太复杂的问题,在此主要简述一下常用的传值方法. 我们传值常用的方法主要有四种: 1.属性传 ...