1975-2011年的数据中。

1)分别统计每年人口最多的国家是哪个?有多少

2)统计出各个国家的1975-2011年的平均人口增长率

3)统计每年人口最多的十个国家

4)统计出每年人口最少的十个国家

5)结合洲的语言的分类,请得出如下结果

5.1)哪个洲的人口最多?哪个洲的人口最少?

每个洲的前3个国家人口排名

5.2)哪种语言的国家人口最多?

librery(xlsx)

data<-read.xlsx("urbanpop.xlsx",sheet_index=3)
i<-0

for(dt in data){
if(i==0){
i<-2
next}
else{
index<-which(dt == max(dt,na.rm=TRUE))
cat(as.character(data$country[index]),dt[index],"\n")

}

}

data$country[1]

(data$X2011[1]-data$X1975[1])^(1/(2011-1975))-1

paste(((data$X2011[1]-data$X1975[1])^(1/(2011-1975))-1)*100,"%",sep="")

for(i in 1:209){
cat(as.character(data$country[i]),"\t",paste(((data$X2011[i]-data$X1975[i])^(1/(2011-1975))-1)*100,"%",sep=""),"\n")

}

i<-0
year<-1975
for(dt in data){
if(i==0){
i<-2
next}
else{
countrys_id <- order(dt,decreasing=TRUE)[1:10]
cat(year,"\t")
for(index in countrys_id){
cat(as.character(data$country[index]),"\t")
}
year=year+1
cat("\n")

}

}

i<-0
year<-1975
for(dt in data){
if(i==0){
i<-2
next}
else{
countrys_id <- order(dt,decreasing=FALSE)[1:10]
cat(year,"\t")
for(index in countrys_id){
cat(as.character(data$country[index]),"\t")
}
year=year+1
cat("\n")

}

}

Asian<-c("Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bhutan", "Cambodia", "Indonesia",
"Iran", "Iraq", "Israel", "Japan", "Kazakhstan", "Kuwait", "Malaysia", "Myanmar", "Nepal", "Oman",
"Pakistan", "Qatar", "Saudi Arabia", "Singapore", "Tajikistan", "Thailand", "Turkmenistan", "Uzbekistan", "Yemen",
"Bangladesh", "Georgia", "India", "Jordan", "North Korea", "South Korea", "Lao", "Lebanon", "Maldives", "Mongolia",
"Philippines", "Sri Lanka", "Timor-Leste", "Turkey", "United Arab Emirates","Brunei", "China", "Hong Kong, China",
"Kyrgyz Republic", "Macao, China", "Syria", "Vietnam")

Europe<-c("Albania", "Austria", "Belgium", "Bosnia and Herzegovina", "Bulgaria", "Croatia",
"Cyprus", "Czech Republic", "Denmark", "Estonia", "France", "Germany", "Greece", "Hungary", "Latvia",
"Liechtenstein", "Lithuania", "Malta", "Netherlands", "Norway", "Portugal", "Russia", "Serbia", "Slovenia", "Sweden", "Ukraine",
"Andorra","Channel Islands", "Faeroe Islands", "Finland", "Iceland", "Ireland", "Isle of Man", "Italy", "Luxembourg", "Macedonia, FYR",
"Moldova", "Monaco", "Montenegro", "Poland", "Romania", "San Marino", "Slovak Republic", "Spain", "Switzerland", "United Kingdom")

Afrain<-c("Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi", "Chad", "Comoros",
"Cote d'Ivoire", "Djibouti", "Eritrea", "Ethiopia", "Guinea", "Kenya", "Lesotho", "Liberia", "Libya",
"Mauritania", "Mauritius", "Mozambique", "Namibia", "Niger", "Rwanda", "Sao Tome and Principe", "Seychelles",
"Sierra Leone", "Swaziland", "Tanzania", "Uganda", "Zambia", "Zimbabwe", "South Sudan","Cameroon",
"Central African Republic", "Egypt", "Equatorial Guinea", "Gabon", "Gambia", "Ghana", "Guinea-Bissau",
"Madagascar", "Malawi", "Mali", "Morocco", "Nigeria", "Senegal", "Somalia", "South Africa", "Sudan", "Togo","Tunisia",
"Cape Verde", "Congo, Dem. Rep.", "Congo, Rep.")

SouthAmerican<-c("Argentina", "Guyana", "Paraguay", "Peru", "Suriname", "Uruguay", "Venezuela","Brazil", "Chile",
"Colombia", "Ecuador","Aruba","Belarus","Bolivia")

NorthAmerican<-c("Antigua and Barbuda", "Bahamas", "Barbados", "Canada", "Greenland", "Grenada",
"Guatemala", "Honduras", "Jamaica", "Nicaragua", "St. Kitts and Nevis", "Trinidad and Tobago","Belize",
"Bermuda", "Cayman Islands", "Costa Rica", "Cuba", "Dominica", "Dominican Republic", "El Salvador",
"Haiti", "Mexico", "Panama", "Puerto Rico", "St. Lucia", "St. Vincent and the Grenadines", "Turks and Caicos Islands",
"United States", "Virgin Islands (U.S.)")

Oceania<-c("Australia", "Kiribati", "New Caledonia", "New Zealand", "Palau", "Papua New Guinea", "Solomon Islands", "Tuvalu",
"American Samoa", "Fiji", "French Polynesia", "Guam", "Marshall Islands", "Northern Mariana Islands", "Samoa", "Tonga", "Vanuatu",
"Micronesia, Fed. Sts.")

AS_number<-0
AF_number<-0
EU_number<-0
SA_number<-0
NA_number<-0
OC_number<-0
other_number<-0
index<-1
for(country in data$country){
if(country %in% Asian){
AS_number= AS_number+data$X2011[index]
}else if(country %in% Europe){
EU_number = EU_number+data$X2011[index]
}else if(country %in% Afrain){
AF_number= AF_number+data$X2011[index]
}else if(country %in% SouthAmerican){
SA_number= SA_number+data$X2011[index]
}else if(country %in% NorthAmerican){
NA_number= NA_number+data$X2011[index]
}else if(country %in% Oceania){
OC_number= OC_number+data$X2011[index]
}else{
other_number= other_number +data$X2011[index]
}
index=index+1
}

cat("亚洲人口数","欧洲人口数","北美洲人口数","南美洲人口数","非洲人口数","大洋洲人口数","\n")
population<-c(AS_number,EU_number,NA_number,SA_number,AF_number,OC_number)
sort_pl<-order(population)
sort_pl

AS<-c()
AF<-c()
EU<-c()
SA<-c()
NAA<-c()
OC<-c()
AS_I<-c()
AF_I<-c()
EU_I<-c()
SA_I<-c()
NAA_I<-c()
OC_I<-c()
index<-1
dt_2011<-data$X2011
for(country in data$country){
if(country %in% Asian){
AS_I=c(AS_I,country)
AS=c(AS,dt_2011[index])
}else if(country %in% Europe){
EU_I=c(EU_I,country)
EU=c(EU,dt_2011[index])
}else if(country %in% Afrain){
AF_I=c(AF_I,country)
AF=c(AF,dt_2011[index])
}else if(country %in% SouthAmerican){
SA_I=c(SA_I,country)
SA=c(SA,dt_2011[index])
}else if(country %in% NorthAmerican){
NAA_I=c(NAA_I,country)
NAA=c(NAA,dt_2011[index])
}else if(country %in% Oceania){
OC_I=c(OC_I,country)
OC=c(OC,dt_2011[index])
}else{
print(country)
}
index=index+1
}
for(x in order(AS,decreasing=TRUE)[1:3]){
cat(AS_I[x],"\t","人口数",AS[x],"\n")
}
for(x in order(AF,decreasing=TRUE)[1:3]){
cat(AF_I[x],"\t","人口数",AF[x],"\n")
}
for(x in order(EU,decreasing=TRUE)[1:3]){
cat(EU_I[x],"\t","人口数",EU[x],"\n")
}
for(x in order(SA,decreasing=TRUE)[1:3]){
cat(SA_I[x],"\t","人口数",SA[x],"\n")
}
for(x in order(NAA,decreasing=TRUE)[1:3]){
cat(NAA_I[x],"\t","人口数",NAA[x],"\n")
}
for(x in order(OC,decreasing=TRUE)[1:3]){
cat(OC_I[x],"\t","人口数",OC[x],"\n")
}

没想到没有R语言的代码贴士。这里面最麻烦的是第五题,数据要自己去爬,去了百度百科还有个data.cn的网站,爬,但是还剩下50几个爬不出来,心里很难受。

说下注意的东西吧。1.是工作目录得注意,不然读取不到csv文件。

2.因为国家名称是以因子的形式读取出来的,因此得使用as.character()来转换一下。

感觉就这两点东西需要注意,这东西不难,但是第五题太繁琐。

R语言处理1975-2011年的人口信息的更多相关文章

  1. R语言中常用包(二)

    数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Micro ...

  2. r语言 包说明

    [在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程.具体如下]   [下面列出每个步骤最有用的一些R包] 1.数据导入以下R包主要用于数据导入和保存数据:feather:一种快速,轻 ...

  3. R语言进行数据预处理wranging

    R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules ...

  4. R语言实战(二)数据管理

    本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx ...

  5. R语言实现 广义加性模型 Generalized Additive Models(GAM) 入门

    转载请说明. R语言官网:http://www.r-project.org/ R语言软件下载:http://ftp.ctex.org/mirrors/CRAN/         注:下载时点击 ins ...

  6. R语言 推荐算法 recommenderlab包

    recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(M ...

  7. R语言学习笔记:日期处理

    1.取出当前日期 Sys.Date() [1] "2014-10-29" date()  #注意:这种方法返回的是字符串类型 [1] "Wed Oct 29 20:36: ...

  8. R语言的前世今生(转)

    最近因病休养在家,另外也算是正式的离开Snack Studio.终于有了大把可以自由支配的时间.可以自主的安排.最近闲暇的时间总算是恶补了不少前段时间行业没有时间关注的新事物.看着行业里引领潮流的东西 ...

  9. R语言各种假设检验实例整理(常用)

    一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264  ...

随机推荐

  1. Java 继承与重写

    1.类的继承 1)继承 父类:所有子类所共有的属性和行为 子类:子类所特有的属性和行为 通过extends关键字来实现类的继承 子类(Sub class)可以继承父类(Super class)的成员变 ...

  2. Codeforces 724 G Xor-matic Number of the Graph 线性基+DFS

    G. Xor-matic Number of the Graph http://codeforces.com/problemset/problem/724/G 题意:给你一张无向图.定义一个无序三元组 ...

  3. CodeForces 52C Circular RMQ (线段树)

    线段树区间更新维护最小值...记得下放标记... 如果线段树上的一个完整区间被修改,那么最小值和最大值增加相应的值后不变, 会改变是因为一部分改变而另外一部分没有改变所以维护一下就好. 询问的时候也要 ...

  4. dp cf 1700 最近几天的刷题

    C. Number of Ways 这个题目的意思是,把这个n的序列分成三个连续的部分,要求这三个部分的和是一样的.问这种划分的方法有多少种. 这个题目和之前写过的数字划分有点像,这个就是要先进行前缀 ...

  5. 天坑之mysql乱码问题以及mysql重启出现1067的错误解决

    相信很多小伙伴都遇到过数据库中文乱码问题,很头疼,明明Navicat上的编码格式都是utf-8是一样的啊? 为什么还是乱码? 原因是Navicat上的数据库编码格式并不是真正的编码格式 ,所以明白了吗 ...

  6. 《队长说得队》第九次团队作业:Beta冲刺与验收准备

    项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十三 团队作业9:Beta冲刺与团队项目验收 团队名 ...

  7. 《剑指offer》39题—数组中出现次数超过一半的数字

    题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2. ...

  8. Ubuntu下命令行访问网站

      第一步,需要安装一个名为w3m的软件工具,打开终端,输入如下命令 sudo apt-get install w3m 第二步,安装好w3m之后,在终端里面启动w3m,打开一个网址,比如w3m www ...

  9. Python——函数基础

    函数是什么 它相当于一个独立的代码块,可以被重复使用,如果需要增加一个功能或者修改一个功能,只需要,增加或者修改函数即可. 函数分类 内置函数 python解释器已经为我们定义好的参数,比如:len( ...

  10. 监测UITextField的变化

    监测UITextField的变化可以为UIControlEventEditingChanged事件添加target. 我们有时候会需要用到这个需求:输入框输入文本超过xx长度,不再允许输入其他内容! ...