1975-2011年的数据中。

1)分别统计每年人口最多的国家是哪个?有多少

2)统计出各个国家的1975-2011年的平均人口增长率

3)统计每年人口最多的十个国家

4)统计出每年人口最少的十个国家

5)结合洲的语言的分类,请得出如下结果

5.1)哪个洲的人口最多?哪个洲的人口最少?

每个洲的前3个国家人口排名

5.2)哪种语言的国家人口最多?

librery(xlsx)

data<-read.xlsx("urbanpop.xlsx",sheet_index=3)
i<-0

for(dt in data){
if(i==0){
i<-2
next}
else{
index<-which(dt == max(dt,na.rm=TRUE))
cat(as.character(data$country[index]),dt[index],"\n")

}

}

data$country[1]

(data$X2011[1]-data$X1975[1])^(1/(2011-1975))-1

paste(((data$X2011[1]-data$X1975[1])^(1/(2011-1975))-1)*100,"%",sep="")

for(i in 1:209){
cat(as.character(data$country[i]),"\t",paste(((data$X2011[i]-data$X1975[i])^(1/(2011-1975))-1)*100,"%",sep=""),"\n")

}

i<-0
year<-1975
for(dt in data){
if(i==0){
i<-2
next}
else{
countrys_id <- order(dt,decreasing=TRUE)[1:10]
cat(year,"\t")
for(index in countrys_id){
cat(as.character(data$country[index]),"\t")
}
year=year+1
cat("\n")

}

}

i<-0
year<-1975
for(dt in data){
if(i==0){
i<-2
next}
else{
countrys_id <- order(dt,decreasing=FALSE)[1:10]
cat(year,"\t")
for(index in countrys_id){
cat(as.character(data$country[index]),"\t")
}
year=year+1
cat("\n")

}

}

Asian<-c("Afghanistan", "Armenia", "Azerbaijan", "Bahrain", "Bhutan", "Cambodia", "Indonesia",
"Iran", "Iraq", "Israel", "Japan", "Kazakhstan", "Kuwait", "Malaysia", "Myanmar", "Nepal", "Oman",
"Pakistan", "Qatar", "Saudi Arabia", "Singapore", "Tajikistan", "Thailand", "Turkmenistan", "Uzbekistan", "Yemen",
"Bangladesh", "Georgia", "India", "Jordan", "North Korea", "South Korea", "Lao", "Lebanon", "Maldives", "Mongolia",
"Philippines", "Sri Lanka", "Timor-Leste", "Turkey", "United Arab Emirates","Brunei", "China", "Hong Kong, China",
"Kyrgyz Republic", "Macao, China", "Syria", "Vietnam")

Europe<-c("Albania", "Austria", "Belgium", "Bosnia and Herzegovina", "Bulgaria", "Croatia",
"Cyprus", "Czech Republic", "Denmark", "Estonia", "France", "Germany", "Greece", "Hungary", "Latvia",
"Liechtenstein", "Lithuania", "Malta", "Netherlands", "Norway", "Portugal", "Russia", "Serbia", "Slovenia", "Sweden", "Ukraine",
"Andorra","Channel Islands", "Faeroe Islands", "Finland", "Iceland", "Ireland", "Isle of Man", "Italy", "Luxembourg", "Macedonia, FYR",
"Moldova", "Monaco", "Montenegro", "Poland", "Romania", "San Marino", "Slovak Republic", "Spain", "Switzerland", "United Kingdom")

Afrain<-c("Algeria", "Angola", "Benin", "Botswana", "Burkina Faso", "Burundi", "Chad", "Comoros",
"Cote d'Ivoire", "Djibouti", "Eritrea", "Ethiopia", "Guinea", "Kenya", "Lesotho", "Liberia", "Libya",
"Mauritania", "Mauritius", "Mozambique", "Namibia", "Niger", "Rwanda", "Sao Tome and Principe", "Seychelles",
"Sierra Leone", "Swaziland", "Tanzania", "Uganda", "Zambia", "Zimbabwe", "South Sudan","Cameroon",
"Central African Republic", "Egypt", "Equatorial Guinea", "Gabon", "Gambia", "Ghana", "Guinea-Bissau",
"Madagascar", "Malawi", "Mali", "Morocco", "Nigeria", "Senegal", "Somalia", "South Africa", "Sudan", "Togo","Tunisia",
"Cape Verde", "Congo, Dem. Rep.", "Congo, Rep.")

SouthAmerican<-c("Argentina", "Guyana", "Paraguay", "Peru", "Suriname", "Uruguay", "Venezuela","Brazil", "Chile",
"Colombia", "Ecuador","Aruba","Belarus","Bolivia")

NorthAmerican<-c("Antigua and Barbuda", "Bahamas", "Barbados", "Canada", "Greenland", "Grenada",
"Guatemala", "Honduras", "Jamaica", "Nicaragua", "St. Kitts and Nevis", "Trinidad and Tobago","Belize",
"Bermuda", "Cayman Islands", "Costa Rica", "Cuba", "Dominica", "Dominican Republic", "El Salvador",
"Haiti", "Mexico", "Panama", "Puerto Rico", "St. Lucia", "St. Vincent and the Grenadines", "Turks and Caicos Islands",
"United States", "Virgin Islands (U.S.)")

Oceania<-c("Australia", "Kiribati", "New Caledonia", "New Zealand", "Palau", "Papua New Guinea", "Solomon Islands", "Tuvalu",
"American Samoa", "Fiji", "French Polynesia", "Guam", "Marshall Islands", "Northern Mariana Islands", "Samoa", "Tonga", "Vanuatu",
"Micronesia, Fed. Sts.")

AS_number<-0
AF_number<-0
EU_number<-0
SA_number<-0
NA_number<-0
OC_number<-0
other_number<-0
index<-1
for(country in data$country){
if(country %in% Asian){
AS_number= AS_number+data$X2011[index]
}else if(country %in% Europe){
EU_number = EU_number+data$X2011[index]
}else if(country %in% Afrain){
AF_number= AF_number+data$X2011[index]
}else if(country %in% SouthAmerican){
SA_number= SA_number+data$X2011[index]
}else if(country %in% NorthAmerican){
NA_number= NA_number+data$X2011[index]
}else if(country %in% Oceania){
OC_number= OC_number+data$X2011[index]
}else{
other_number= other_number +data$X2011[index]
}
index=index+1
}

cat("亚洲人口数","欧洲人口数","北美洲人口数","南美洲人口数","非洲人口数","大洋洲人口数","\n")
population<-c(AS_number,EU_number,NA_number,SA_number,AF_number,OC_number)
sort_pl<-order(population)
sort_pl

AS<-c()
AF<-c()
EU<-c()
SA<-c()
NAA<-c()
OC<-c()
AS_I<-c()
AF_I<-c()
EU_I<-c()
SA_I<-c()
NAA_I<-c()
OC_I<-c()
index<-1
dt_2011<-data$X2011
for(country in data$country){
if(country %in% Asian){
AS_I=c(AS_I,country)
AS=c(AS,dt_2011[index])
}else if(country %in% Europe){
EU_I=c(EU_I,country)
EU=c(EU,dt_2011[index])
}else if(country %in% Afrain){
AF_I=c(AF_I,country)
AF=c(AF,dt_2011[index])
}else if(country %in% SouthAmerican){
SA_I=c(SA_I,country)
SA=c(SA,dt_2011[index])
}else if(country %in% NorthAmerican){
NAA_I=c(NAA_I,country)
NAA=c(NAA,dt_2011[index])
}else if(country %in% Oceania){
OC_I=c(OC_I,country)
OC=c(OC,dt_2011[index])
}else{
print(country)
}
index=index+1
}
for(x in order(AS,decreasing=TRUE)[1:3]){
cat(AS_I[x],"\t","人口数",AS[x],"\n")
}
for(x in order(AF,decreasing=TRUE)[1:3]){
cat(AF_I[x],"\t","人口数",AF[x],"\n")
}
for(x in order(EU,decreasing=TRUE)[1:3]){
cat(EU_I[x],"\t","人口数",EU[x],"\n")
}
for(x in order(SA,decreasing=TRUE)[1:3]){
cat(SA_I[x],"\t","人口数",SA[x],"\n")
}
for(x in order(NAA,decreasing=TRUE)[1:3]){
cat(NAA_I[x],"\t","人口数",NAA[x],"\n")
}
for(x in order(OC,decreasing=TRUE)[1:3]){
cat(OC_I[x],"\t","人口数",OC[x],"\n")
}

没想到没有R语言的代码贴士。这里面最麻烦的是第五题,数据要自己去爬,去了百度百科还有个data.cn的网站,爬,但是还剩下50几个爬不出来,心里很难受。

说下注意的东西吧。1.是工作目录得注意,不然读取不到csv文件。

2.因为国家名称是以因子的形式读取出来的,因此得使用as.character()来转换一下。

感觉就这两点东西需要注意,这东西不难,但是第五题太繁琐。

R语言处理1975-2011年的人口信息的更多相关文章

  1. R语言中常用包(二)

    数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Micro ...

  2. r语言 包说明

    [在实际工作中,每个数据科学项目各不相同,但基本都遵循一定的通用流程.具体如下]   [下面列出每个步骤最有用的一些R包] 1.数据导入以下R包主要用于数据导入和保存数据:feather:一种快速,轻 ...

  3. R语言进行数据预处理wranging

    R语言进行数据预处理wranging li_volleyball 2016年3月22日 data wrangling with R packages:tidyr dplyr Ground rules ...

  4. R语言实战(二)数据管理

    本文对应<R语言实战>第4章:基本数据管理:第5章:高级数据管理 创建新变量 #建议采用transform()函数 mydata <- transform(mydata, sumx ...

  5. R语言实现 广义加性模型 Generalized Additive Models(GAM) 入门

    转载请说明. R语言官网:http://www.r-project.org/ R语言软件下载:http://ftp.ctex.org/mirrors/CRAN/         注:下载时点击 ins ...

  6. R语言 推荐算法 recommenderlab包

    recommend li_volleyball 2016年3月20日 library(recommenderlab) library(ggplot2) # data(MovieLense) dim(M ...

  7. R语言学习笔记:日期处理

    1.取出当前日期 Sys.Date() [1] "2014-10-29" date()  #注意:这种方法返回的是字符串类型 [1] "Wed Oct 29 20:36: ...

  8. R语言的前世今生(转)

    最近因病休养在家,另外也算是正式的离开Snack Studio.终于有了大把可以自由支配的时间.可以自主的安排.最近闲暇的时间总算是恶补了不少前段时间行业没有时间关注的新事物.看着行业里引领潮流的东西 ...

  9. R语言各种假设检验实例整理(常用)

    一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264  ...

随机推荐

  1. 抓取GridView "编辑"模式下,TextBox修改后的数值

    [FAQ]抓取GridView "编辑"模式下,TextBox修改后的数值 -- ASP.NET专题实务「上集」Ch.10 抓取GridView "编辑"模式下 ...

  2. 团队作业-Beta冲刺(周三)

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1 这个作业要求在哪里 https://edu.cnblo ...

  3. C++容器类-vector

    vecto之简单应用: #include<vector> #include<iostream> using namespace std; int main() { vector ...

  4. js完成打印功能

    最近在做项目要求实现打印功能,我采用js方式来实现 window.print();会弹出打印对话框,打印的是window.docunemt.body.innerHTML中的内容,可以局部打印,也可以全 ...

  5. cocos2dx 3.x lua 网络加载并且保存资源(unix、linux)

    #ifndef __DazzleParkour__TextLoader__ #define __DazzleParkour__TextLoader__ #include <stdio.h> ...

  6. 如何在 JavaScript 中更好地使用数组

    使用 Array.includes 替代 Array.indexOf “如果需要在数组中查找某个元素,请使用 Array.indexOf.” 我记得在我学习 JavaScript 的课程中有类似的这么 ...

  7. Search and Replace -freecodecamp算法题目

    Search and Replace 1.要求 使用给定的参数对句子执行一次查找和替换,然后返回新句子. 第一个参数是将要对其执行查找和替换的句子. 第二个参数是将被替换掉的单词(替换前的单词). 第 ...

  8. Chunky Monkey-freecodecamp算法题目

    Chunky Monkey(猴子吃香蕉, 分割数组) 要求 把一个数组arr按照指定的数组大小size分割成若干个数组块. 思路 利用size值和while语句确定切割数组的次数(定义temp将siz ...

  9. Linux - which xxx - 查找执行的命令所在的路径

    Linux 下,我们常使用 cd ,grep,vi 等命令,有时候我们要查到这些命令所在的位置,如何做呢? Linux 下有2个命令可完成该功能:which ,whereis which 用来查看当 ...

  10. Linux菜鸟起飞之路【九】系统启动流程

    Linux系统启动流程 BIOS -> MBR  -> BootLoader -> Kernel -> init 1.打开电源后,计算机从主板的BIOS中读取其中存储的程序.这 ...