传送门

模型

二分图最大独立集,转化为二分图最大匹配,从而用最大流解决。

实现

首先把棋盘黑白染色,使相邻格子颜色不同。

把所有可用的黑色格子看做二分图X集合中顶点,可用的白色格子看做Y集合顶点。

建立附加源S汇T,从S向X集合中每个顶点连接一条容量为1的有向边,从Y集合中每个顶点向T连接一条容量为1的有向边。

从每个可用的黑色格子向骑士一步能攻击到的可用的白色格子连接一条容量为无穷大的有向边。

求出网络最大流,要求的结果就是可用格子的数量减去最大流量。

分析

用网络流的方法解决棋盘上的问题,一般都要对棋盘黑白染色,使之成为一个二分图。放尽可能多的不能互相攻击的骑士,就是一个二分图最大独立集问题。有关二分图最大独立集问题,更多讨论见《最小割模型在信息学竞赛中的应用》作者胡伯涛。

该题规模比较大,需要用效率较高的网络最大流算法解决。(使用Dinic+当前弧优化)

——代码

 #include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
#define N 1000001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, m, cnt, tot, sum, s, t;
int map[][], head[N], to[N], val[N], next[N], dis[N], cur[N];
int dx[] = {-, -, , , , , -, -},
dy[] = {, , , , -, -, -, -}; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add2(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline void add(int x, int y, int z)
{
add2(x, y, z);
add2(y, x, );
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int v, d, ret = ;
for(int &i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
return ret;
} int main()
{
int i, j, k, x, y;
n = read();
m = read();
s = , t = n * n + ;
memset(head, -, sizeof(head));
for(i = ; i <= m; i++)
{
x = read();
y = read();
map[x][y] = -;
}
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
if(!map[i][j])
{
map[i][j] = ++tot;
if((i + j) & ) add(s, tot, );
else add(tot, t, );
}
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
if(map[i][j] ^ - && (i + j) & )
for(k = ; k < ; k++)
{
x = i + dx[k];
y = j + dy[k];
if(x >= && x <= n && y >= && y <= n && map[x][y] ^ -) add(map[i][j], map[x][y], INF);
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
sum += dfs(s, INF);
}
printf("%d\n", tot - sum);
return ;
}

[luoguP3355] 骑士共存问题(二分图最大独立集)的更多相关文章

  1. 洛谷P3355 骑士共存问题 二分图_网络流

    Code: #include<cstdio> #include<cstring> #include<queue> #include<vector> #i ...

  2. 【Codevs1922】骑士共存问题(最小割,二分图最大独立集转最大匹配)

    题意: 在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个 ...

  3. 「CODVES 1922 」骑士共存问题(二分图的最大独立集|网络流)&dinic

    首先是题目链接  http://codevs.cn/problem/1922/ 结果发现题目没图(心情复杂 然后去网上扒了一张图 大概就是这样了. 如果把每个点和它可以攻击的点连一条边,那问题就变成了 ...

  4. Cogs 746. [网络流24题] 骑士共存(最大独立集)

    [网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比 时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国 ...

  5. COGS746. [网络流24题] 骑士共存

    骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...

  6. 【刷题】LOJ 6226 「网络流 24 题」骑士共存问题

    题目描述 在一个 \(\text{n} \times \text{n}\) 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 \(\t ...

  7. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  8. BZOJ3175:[TJOI2013]攻击装置(二分图最大独立集)

    Description 给定一个01矩阵,其中你可以在0的位置放置攻击装置.每一个攻击装置(x,y)都可以按照“日”字攻击其周围的 8个位置(x-1,y-2),(x-2,y-1),(x+1,y-2), ...

  9. [网络流24题] 骑士共存(cogs 746)

    骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...

随机推荐

  1. Ubuntu18.04如何从英文界面更改为中文界面

    本文介绍如何将Ubuntu18.04安装后的英文界面,更改为中文界面,即系统语言由英文改为简体中文.注意,与安装中文输入法不同,两者也没有冲突. 首先进入设置(Setting),选择区域和语言(Reg ...

  2. 第010课_掌握ARM芯片时钟体系

    from:第010课_掌握ARM芯片时钟体系 第001节_S3C2440时钟体系结构 S3C2440是System On Chip(SOC),在芯片省不仅仅有CPU,还有一堆外设. 至于有哪些外设,可 ...

  3. vue跨域处理(vue项目中baseUrl设置问题)

    1.开发环境: 2.生产环境: 然后 const instance = axios.create({ baseURL: process.env.API })

  4. 在Python中使用help帮助

    在Python中使用help帮助 >>> import numpy >>> help(numpy.argsort) Help on function argsort ...

  5. linux 安装并且设置环境lua环境变量

    在lua官网下载lua安装包并安装: http://www.lua.org/download.html 解压编译: wget http://www.lua.org/ftp/lua-5.3.2.tar. ...

  6. HTTP无状态协议和session原理(access_token原理)

    无状态协议是指协议对务处理没有记忆能力.缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大.另一方面,在服务器不需要先前信息时它的应答就较快. Http协议不 ...

  7. C语言中声明和定义详解(待看。。

    变量声明和变量定义 变量定义:用于为变量分配存储空间,还可为变量指定初始值.程序中,变量有且仅有一个定义. 变量声明:用于向程序表明变量的类型和名字. 定义也是声明,extern声明不是定义 定义也是 ...

  8. CentOS7练习

    为编译安装的httpd服务,实现service unit文件破解centos7 口令修改默认的启动内核为新编译内核启动时临时禁用SELinux启动时进入emergency模式卸载编译安装的新内核

  9. C#基础-判断语句

    switch语句 Console.WriteLine("请输入月份"); string strInput = Console.ReadLine(); switch(strInput ...

  10. 在物理机上,用U盘安装esxi虚拟化环境

    一般使用U盘安装centos镜像,可使用镜像刻录工具UltraISO,详细方法参照如下链接: https://jingyan.baidu.com/article/647f0115ee55ba7f214 ...