Priest John's Busiest Day
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10010   Accepted: 3425   Special Judge

Description

John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.

Note that John can not be present at two weddings simultaneously.

Input

The first line contains a integer N ( 1 ≤ N ≤ 1000). 
The next N lines contain the SiTi and DiSi and Ti are in the format of hh:mm.

Output

The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.

Sample Input

2
08:00 09:00 30
08:15 09:00 20

Sample Output

YES
08:00 08:30
08:40 09:00

题目链接:POJ 3683

挑战程序书上的例题,重新学习了一下2-SAT,一般的2-SAT是给出一些矛盾的条件,然后根据这些矛盾的条件用强连通分量算法来做。

首先要知道把什么东西拆点,一般是去拆具有两个对立面的事物,比如这题就是神父出现在开头和神父出现在结尾,两者就是不能同时发生的对立面,然后记这两个对立面为$x_i$与$\lnot x_i$,显然一般情况下如果a与b矛盾那么就是说“a与b不能同时发生”,转换成标记符号就是$\lnot (a \land b)$,然后把这个式子拆开得到$\lnot a\lor\lnot b$,那么得到这样一个析取范式,我们可以将他转换成蕴含式子,即$(a \to \lnot b)\land(b \to \lnot a)$,这显然可以转换成两条有向边$<a, \lnot b>$与$<b, \lnot a>$,然后对图进行DFS得到强连通分量,然后看$\lnot x_i$与$x_i$是否在同一个强连通分量里,如果在同一个scc中显然是矛盾的,这题的话就第i个时间段和第j个时间段的开头和结束位置共4种关心进行判断,冲突就按上面的方法连边再scc处理即可,如果存在方案,只要判断$x_i$所在的连通分量编号与$\lnot x_i$所在的连通分量编号即可

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int MAXV = N * 2;
const int MAXE = N * N * 4 * 2;
struct edge
{
int to, nxt;
edge() {}
edge(int _to, int _nxt): to(_to), nxt(_nxt) {}
};
edge E[MAXE];
int head[MAXV], tot;
int dfn[MAXV], low[MAXV], belong[MAXV], st[MAXV], top, ts, ins[MAXV], sc;
int s[N], t[N], d[N]; void init()
{
CLR(head, -1);
tot = 0;
CLR(dfn, 0);
CLR(low, 0);
top = sc = 0;
CLR(ins, 0);
sc = 0;
}
inline void add(int s, int t)
{
E[tot] = edge(t, head[s]);
head[s] = tot++;
}
void Tarjan(int u)
{
low[u] = dfn[u] = ++ts;
st[top++] = u;
ins[u] = 1;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (ins[v])
low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u])
{
++sc;
int v;
do
{
v = st[--top];
ins[v] = 0;
belong[v] = sc;
} while (u != v);
}
}
int main(void)
{
int n, i, j;
while (~scanf("%d", &n))
{
init();
for (i = 1; i <= n; ++i)
{
int h1, m1, h2, m2;
scanf(" %d:%d %d:%d %d", &h1, &m1, &h2, &m2, &d[i]);
s[i] = h1 * 60 + m1;
t[i] = h2 * 60 + m2;
}
for (i = 1; i <= n; ++i) //n*n*4*2
{
for (j = 1; j <= n; ++j)
{
if (i == j)
continue;
if (min(s[i] + d[i], s[j] + d[j]) > max(s[i], s[j])) //s-s
{
add(i, j + n);
add(j, i + n);
}
if (min(s[i] + d[i], t[j]) > max(s[i], t[j] - d[j])) //s-t
{
add(i, j);
add(j + n, i + n);
}
if (min(t[i], s[j] + d[j]) > max(t[i] - d[i], s[j])) //t-s
{
add(i + n, j + n);
add(j, i);
}
if (min(t[i], t[j]) > max(t[i] - d[i], t[j] - d[j])) //t-t
{
add(i + n, j);
add(j + n, i);
}
}
}
for (i = 1; i <= (n << 1); ++i)
if (!dfn[i])
Tarjan(i);
int flag = 1;
for (i = 1; i <= n; ++i)
if (belong[i] == belong[i + n])
flag = 0;
if (!flag)
puts("NO");
else
{
puts("YES");
for (i = 1; i <= n; ++i)
{
if (belong[i] < belong[i + n])
printf("%02d:%02d %02d:%02d\n", s[i] / 60, s[i] % 60, (s[i] + d[i]) / 60, (s[i] + d[i]) % 60);
else
printf("%02d:%02d %02d:%02d\n", (t[i] - d[i]) / 60, (t[i] - d[i]) % 60, (t[i]) / 60, (t[i]) % 60);
}
}
}
return 0;
}

POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)的更多相关文章

  1. POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)

    Description John is the only priest in his town. September 1st is the John's busiest day in a year b ...

  2. POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)

    POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...

  3. POJ 3683 Priest John's Busiest Day (2-SAT)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6900   Accept ...

  4. poj - 3683 - Priest John's Busiest Day(2-SAT)

    题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...

  5. POJ 3683 Priest John's Busiest Day (2-SAT)

    题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...

  6. POJ 3683 Priest John's Busiest Day (2-SAT,常规)

    题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...

  7. POJ 3683 Priest John's Busiest Day

    2-SAT简单题,判断一下两个开区间是否相交 #include<cstdio> #include<cstring> #include<cmath> #include ...

  8. POJ 3683 Priest John's Busiest Day[2-SAT 构造解]

    题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...

  9. POJ 3683 Priest John's Busiest Day 【2-Sat】

    这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...

随机推荐

  1. maven操作手册

    ===Maven的安装=== http://blog.csdn.net/yang5726685/article/details/56486479 ===Maven的jar包仓库地址配置=== http ...

  2. 树莓派(raspberry pi)更改键盘布局

    http://blog.csdn.net/c80486/article/details/8460271 树莓派(raspberry pi)用了几次后,发现键盘老是按错,一些字符打不出来或打错 这个问题 ...

  3. Luogu [P2814] 家谱

    题目链接 这个题不难,但是有点小小坑. 首先并查集肯定能看出来. 然后字符串的话,一开始我想用 hash 来处理,但想了想,离散化不好搞,人也太多了,一不小心就hash重了,还是算了. 然后就想到了S ...

  4. 事件流,事件对象和jQuery

    事件流 多个彼此嵌套元素,他们拥有相同的事件,最内部元素事件被触发后,外边多个元素的同类型事件也会被触发,多个元素他们同类型事件同时执行的效果称为“事件流” 例子:html代码: <div cl ...

  5. SummerVocation_Learning--java的String类运用

    题目: 编写一个程序,输出一个字符串中的大写字母数,小写字母数,及其它字母数. 思路1: 可以先遍历整个字符串,在判断每个字符的类型. public class TestString { public ...

  6. 十六、MySQL LIKE 子句

    MySQL LIKE 子句 我们知道在 MySQL 中使用 SQL SELECT 命令来读取数据, 同时我们可以在 SELECT 语句中使用 WHERE 子句来获取指定的记录. WHERE 子句中可以 ...

  7. Linux-git安装

    基本操作 安装yum install git 生成SSH KEY :先cd ~/.ssh,在这个目录下输入ssh-keygen,一直回车就可以了,这个时候就会出现id_rsd.pub公钥和id_rsa ...

  8. windows 解决缺失.dll的问题

    1.缺失MSVCR120.dell和MSVCP120.dll,如图: 这种问题是因为没有Microsoft Visual C++ 2013运行库的问题,自行百度在Microsoft官网下载即可,注意需 ...

  9. 宏基笔记本升级bios(2012-12-28-bd 写的日志迁移

    首先到宏基官网下载中心 去下载你需要的新版本的bios安装包如图: 我的是宏基4750g的win7旗舰版64位,这里一定要根据自己的电脑的型号和安装的系统来选择,你可以选择最新的版本也可以选择老的版本 ...

  10. JZOJ 3508. 【NOIP2013模拟11.5B组】好元素

    3508. [NOIP2013模拟11.5B组]好元素(good) (File IO): input:good.in output:good.out Time Limits: 2000 ms  Mem ...