POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)
| Time Limit: 2000MS | Memory Limit: 65536K | |||
| Total Submissions: 10010 | Accepted: 3425 | Special Judge | ||
Description
John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.
Note that John can not be present at two weddings simultaneously.
Input
The first line contains a integer N ( 1 ≤ N ≤ 1000).
The next N lines contain the Si, Ti and Di. Si and Ti are in the format of hh:mm.
Output
The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.
Sample Input
2
08:00 09:00 30
08:15 09:00 20
Sample Output
YES
08:00 08:30
08:40 09:00
题目链接:POJ 3683
挑战程序书上的例题,重新学习了一下2-SAT,一般的2-SAT是给出一些矛盾的条件,然后根据这些矛盾的条件用强连通分量算法来做。
首先要知道把什么东西拆点,一般是去拆具有两个对立面的事物,比如这题就是神父出现在开头和神父出现在结尾,两者就是不能同时发生的对立面,然后记这两个对立面为$x_i$与$\lnot x_i$,显然一般情况下如果a与b矛盾那么就是说“a与b不能同时发生”,转换成标记符号就是$\lnot (a \land b)$,然后把这个式子拆开得到$\lnot a\lor\lnot b$,那么得到这样一个析取范式,我们可以将他转换成蕴含式子,即$(a \to \lnot b)\land(b \to \lnot a)$,这显然可以转换成两条有向边$<a, \lnot b>$与$<b, \lnot a>$,然后对图进行DFS得到强连通分量,然后看$\lnot x_i$与$x_i$是否在同一个强连通分量里,如果在同一个scc中显然是矛盾的,这题的话就第i个时间段和第j个时间段的开头和结束位置共4种关心进行判断,冲突就按上面的方法连边再scc处理即可,如果存在方案,只要判断$x_i$所在的连通分量编号与$\lnot x_i$所在的连通分量编号即可
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 1010;
const int MAXV = N * 2;
const int MAXE = N * N * 4 * 2;
struct edge
{
int to, nxt;
edge() {}
edge(int _to, int _nxt): to(_to), nxt(_nxt) {}
};
edge E[MAXE];
int head[MAXV], tot;
int dfn[MAXV], low[MAXV], belong[MAXV], st[MAXV], top, ts, ins[MAXV], sc;
int s[N], t[N], d[N]; void init()
{
CLR(head, -1);
tot = 0;
CLR(dfn, 0);
CLR(low, 0);
top = sc = 0;
CLR(ins, 0);
sc = 0;
}
inline void add(int s, int t)
{
E[tot] = edge(t, head[s]);
head[s] = tot++;
}
void Tarjan(int u)
{
low[u] = dfn[u] = ++ts;
st[top++] = u;
ins[u] = 1;
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if (ins[v])
low[u] = min(low[u], dfn[v]);
}
if (low[u] == dfn[u])
{
++sc;
int v;
do
{
v = st[--top];
ins[v] = 0;
belong[v] = sc;
} while (u != v);
}
}
int main(void)
{
int n, i, j;
while (~scanf("%d", &n))
{
init();
for (i = 1; i <= n; ++i)
{
int h1, m1, h2, m2;
scanf(" %d:%d %d:%d %d", &h1, &m1, &h2, &m2, &d[i]);
s[i] = h1 * 60 + m1;
t[i] = h2 * 60 + m2;
}
for (i = 1; i <= n; ++i) //n*n*4*2
{
for (j = 1; j <= n; ++j)
{
if (i == j)
continue;
if (min(s[i] + d[i], s[j] + d[j]) > max(s[i], s[j])) //s-s
{
add(i, j + n);
add(j, i + n);
}
if (min(s[i] + d[i], t[j]) > max(s[i], t[j] - d[j])) //s-t
{
add(i, j);
add(j + n, i + n);
}
if (min(t[i], s[j] + d[j]) > max(t[i] - d[i], s[j])) //t-s
{
add(i + n, j + n);
add(j, i);
}
if (min(t[i], t[j]) > max(t[i] - d[i], t[j] - d[j])) //t-t
{
add(i + n, j);
add(j + n, i);
}
}
}
for (i = 1; i <= (n << 1); ++i)
if (!dfn[i])
Tarjan(i);
int flag = 1;
for (i = 1; i <= n; ++i)
if (belong[i] == belong[i + n])
flag = 0;
if (!flag)
puts("NO");
else
{
puts("YES");
for (i = 1; i <= n; ++i)
{
if (belong[i] < belong[i + n])
printf("%02d:%02d %02d:%02d\n", s[i] / 60, s[i] % 60, (s[i] + d[i]) / 60, (s[i] + d[i]) % 60);
else
printf("%02d:%02d %02d:%02d\n", (t[i] - d[i]) / 60, (t[i] - d[i]) % 60, (t[i]) / 60, (t[i]) % 60);
}
}
}
return 0;
}
POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)的更多相关文章
- POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)
Description John is the only priest in his town. September 1st is the John's busiest day in a year b ...
- POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)
POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...
- POJ 3683 Priest John's Busiest Day (2-SAT)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6900 Accept ...
- poj - 3683 - Priest John's Busiest Day(2-SAT)
题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...
- POJ 3683 Priest John's Busiest Day (2-SAT)
题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...
- POJ 3683 Priest John's Busiest Day (2-SAT,常规)
题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...
- POJ 3683 Priest John's Busiest Day
2-SAT简单题,判断一下两个开区间是否相交 #include<cstdio> #include<cstring> #include<cmath> #include ...
- POJ 3683 Priest John's Busiest Day[2-SAT 构造解]
题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...
- POJ 3683 Priest John's Busiest Day 【2-Sat】
这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...
随机推荐
- 【BZOJ2733】[HNOI2012] 永无乡(启发式合并Splay)
点此看题面 大致题意: 给你一张图,其中每个点有一个权值,有两种操作:在两点之间连一条边,询问一个点所在联通块第\(k\)小的权值. 平衡树 看到第\(k\)小,应该不难想到平衡树. 为了练习\(Sp ...
- AngularJs学习笔记-组件生命周期
组件生命周期 (1)组件生命周期钩子 constructor:组件创建时被创建 ngOnChanges: 父组件修改或初始化子组件的输入属性时被调用,如果子组件没有输入属性,则永远不会被调用,它的首次 ...
- C#逻辑运算符
一.C#逻辑运算符 C#语言的逻辑运算符是对变量的值.表达式的运算结果进行比较,基比较结果为True或False. 二.示例 using System;using System.Collections ...
- python字典形list 去重复
data_list = [{"}] run_function = lambda x, y: x if y in x else x + [y] return reduce(run_functi ...
- 同时启动多个tomcat的配置信息
同时启动多个tomcat的配置信息 下面把该配置文件中各端口的含义说明下. <Server port="8005" shutdown="SHUTDOWN" ...
- Nuxt.js 基础入门教程
原文链接 Vue 开发一个单页面应用,相信很多前端工程师都已经学会了,但是单页面应用有一个致命的缺点,就是 SEO 极不友好.除非,vue 能在服务端渲染(ssr)并直接返回已经渲染好的页面,而并非只 ...
- GoF23种设计模式之创建型模式之建造者模式
一.概述 将一个复杂对象的构建与其表示分离开来,使得同样的构建过程可以创建不同的表示. 二.适用性 1.当创建复杂对象的算法应该独立于该对象的组成部分以及它们的装配方式的时候. 2.当构造过程必须允许 ...
- makefile学习(1)
GNU Make / Makefile 学习资料 GNU Make学习总结(一) GNU Make学习总结(二) 这篇学习总结,从一个简单的小例子开始,逐步加深,来讲解Makefile的用法. 最后用 ...
- 大数模板Java
import java.util.*; import java.math.BigInteger; public class Main{ public static void main(String a ...
- python实现分布式进程
今天用python实现分布式,基于python2.7,注意:在linux下执行测试通过,在windows测试失败.# -*- coding: utf-8 -*-__author__ = 'dell'i ...