Perfect Cubes
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 12595   Accepted: 6707

Description

For hundreds of years Fermat's Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the "perfect cube" equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a,b,c,d} which satisfy this equation for a <= N.

Input

One integer N (N <= 100).

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

Sample Input

24

Sample Output

Cube = 6, Triple = (3,4,5)
Cube = 12, Triple = (6,8,10)
Cube = 18, Triple = (2,12,16)
Cube = 18, Triple = (9,12,15)
Cube = 19, Triple = (3,10,18)
Cube = 20, Triple = (7,14,17)
Cube = 24, Triple = (12,16,20)
题目大意:给定一个数n,三个数a,b,c大于1,问n以内有多少个数字满足n^3 = a^3 + b^3 + c^3。
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std; int ans[];
int visted[];
int selected[]; void DFS(int n, int index)
{
if (index == )
{
if (n * n * n == ans[] * ans[] * ans[] + ans[] * ans[] * ans[] + ans[] * ans[] * ans[] && selected[ans[]] * selected[ans[]] * selected[ans[]] == )
{
printf("Cube = %d, Triple = (%d,%d,%d)\n", n, ans[], ans[], ans[]);
selected[ans[]] = selected[ans[]] = selected[ans[]] = ;
}
return;
}
for (int i = ; i < n; i++)
{
if (!visted[i])
{
visted[i] = ;
ans[index] = i;
DFS(n, index + );
visted[i] = ;
}
}
} int main()
{
int n;
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
memset(visted, , sizeof(visted));
memset(selected, , sizeof(selected));
DFS(i, );
}
return ;
}

POJ 1543 Perfect Cubes的更多相关文章

  1. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  2. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  3. poj 1543 Perfect Cubes (暴搜)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15302   Accepted: 7936 De ...

  4. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  5. POJ 3905 Perfect Election(2-sat)

    POJ 3905 Perfect Election id=3905" target="_blank" style="">题目链接 思路:非常裸的 ...

  6. POJ 3398 Perfect Service --最小支配集

    题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...

  7. HDOJ 1334 Perfect Cubes(暴力)

    Problem Description For hundreds of years Fermat's Last Theorem, which stated simply that for n > ...

  8. POJ 1730 Perfect Pth Powers(暴力枚举)

    题目链接: https://cn.vjudge.net/problem/POJ-1730 题目描述: We say that x is a perfect square if, for some in ...

  9. POJ 3905 Perfect Election (2-Sat)

    Perfect Election Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 438   Accepted: 223 De ...

随机推荐

  1. 2840 WIKIOI——评测

    2840 WIKIOI——评测 时间限制: 1 s 空间限制: 2000 KB 题目等级 : 白银 Silver       题目描述 Description Wikioi上有一题有N个测试点,时限为 ...

  2. DVWA之跨站请求伪造(CSRF)

    CSRF全称是Cross site request forgery ,翻译过来就是跨站请求伪造. CSRF是指利用受害者尚未失效的身份认证信息(cookie,会话信息),诱骗其点击恶意链接或者访问包含 ...

  3. uvm_sequence_item——sequence机制(一)

    让子弹飞一会 UVM框架,将验证平台和激励分开,env以下属于平台部分,test和sequence属于激励,这样各司其职.我们可以将sequence_item 比喻成子弹,sequencer 类比成弹 ...

  4. tar.gz

    tar.gz,或者.tgz的文件一般是在UNIX下用tar和gunzip压缩的文件.可能的文件名还有.tar.gz等.gunzip是一种比pkzip压缩比高的压缩程序,一般 UNIX下都有.tar是一 ...

  5. 洛谷 P2617 Dynamic Ranking

    题目描述 给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤ ...

  6. codevs 1145 Hanoi双塔问题 2007年NOIP全国联赛普及组

    时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题目描述 Description 给定A.B.C三根足够长的细柱,在A柱上放有2n个中间有孔的圆盘,共有n个不同的 ...

  7. hdu 6058 Kanade's sum (计算贡献,思维)

    题意: 给你一个全排列,要你求这个序列的所有区间的第k大的和 思路:比赛的时候一看就知道肯定是算贡献,也知道是枚举每个数,然后看他在多少个区间是第K大,然后计算他的贡献就可以了,但是没有找到如何在o( ...

  8. 阿里云apt-get安装包时Err:2 http://mirrors.cloud.aliyuncs.com/ubuntu xenial-security/main amd64 git amd64 1:2.7.4-0ubuntu1.2 404 Not Found

    新部署的云服务器出现如下错误: root@iZj6cbjalvhsw0fhndmm5xZ:~# apt-get install git Reading package lists... Done Bu ...

  9. JSONP 跨域请求 - 获取JSON数据

    如何用原生方式使用JSONP? 下边这一DEMO实际上是JSONP的简单表现形式,在客户端声明回调函数之后,客户端通过script标签向服务器跨域请求数据,然后服务端返回相应的数据并动态执行回调函数. ...

  10. House of force

    0x00 利用要点 1.申请一块非常大的块. 2.精心构造size覆盖top chunk的chunk header. 3.调用malloc()实现任意地址写 0x01 申请一块非常大的块. 申请一个负 ...