【期望dp】bzoj4832: [Lydsy1704月赛]抵制克苏恩
这个题面怎么这么歧义……
Description
Input
Output
对于每局游戏,输出一个数字表示总伤害的期望值,保留两位小数。
题目分析
期望dp是真的太不熟了……暴力都能打挂。
#include<cstdio> int T,k,a,b,c;
double ans; void dfs(int done, int n1, int n2, int n3, int bld, double sta)
{
if (done==k||!bld) return;
if (n1) dfs(done+, n1-, n2, n3, bld, sta*n1/(n1+n2+n3+1.0));
if (n2){
if (n1+n2+n3 < )
dfs(done+, n1+, n2-, n3+, bld, sta*n2/(n1+n2+n3+1.0));
else dfs(done+, n1+, n2-, n3, bld, sta*n2/(n1+n2+n3+1.0));
}
if (n3){
if (n1+n2+n3 < )
dfs(done+, n1, n2+, n3, bld, sta*n3/(n1+n2+n3+1.0));
else dfs(done+, n1, n2+, n3-, bld, sta*n3/(n1+n2+n3+1.0));
}
ans += sta/(n1+n2+n3+1.0);
dfs(done+, n1, n2, n3, bld, sta/(n1+n2+n3+1.0));
}
int main()
{
freopen("cthun.in","r",stdin);
freopen("cthun.out","w",stdout);
scanf("%d",&T);
while (T--)
{
ans = ;
scanf("%d%d%d%d",&k,&a,&b,&c);
dfs(, a, b, c, , 1.0);
printf("%.2lf\n",ans);
}
return ;
}
这个是暴力。标红部分意味着:对于n个奴隶主,攻击他们其中一个是不相同的,所以转移到这个状态的概率要乘n。
那么期望dp通常来说状态是倒着表示的:$f[t][i][j][k]$表示初始状态为$(t,i,j,k)$,最终的获得期望是多少。这样做的好处在于,可以预处理出所有的初始状态,并且转移时候会更加方便,不需要记录转移的概率。
所以这也算是一个需要灵活应用的点吧。
#include<cstdio>
#include<cctype> int T,k,a,b,c;
double f[][][][]; int read()
{
int num = ;
bool fl = ;
char ch = getchar();
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
freopen("cthun.in","r",stdin);
freopen("cthun.out","w",stdout);
for (int t=; t<=; t++)
for (int i=; i<=; i++)
for (int j=; i+j<=; j++)
for (int k=; i+j+k<=; k++)
{
double sum = i+j+k+1.0;
f[t][i][j][k] += (f[t-][i][j][k]+)/sum;
f[t][i][j][k] += f[t-][i-][j][k]*i/sum;
if (i+j+k < )
f[t][i][j][k] += f[t-][i+][j-][k+]*j/sum,
f[t][i][j][k] += f[t-][i][j+][k]*k/sum;
else
f[t][i][j][k] += f[t-][i+][j-][k]*j/sum,
f[t][i][j][k] += f[t-][i][j+][k-]*k/sum;
}
T = read();
while (T--) printf("%.2lf\n",f[read()][read()][read()][read()]);
return ;
}
END
【期望dp】bzoj4832: [Lydsy1704月赛]抵制克苏恩的更多相关文章
- BZOJ4832[Lydsy1704月赛]抵制克苏恩——期望DP
题目描述 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 30 点血量的 ...
- BZOJ4832: [Lydsy1704月赛]抵制克苏恩(期望DP)
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 913 Solved: 363[Submit][Status][Discuss] Description ...
- BZOJ4832: [Lydsy1704月赛]抵制克苏恩(记忆化&期望)
Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...
- BZOJ4832: [Lydsy1704月赛]抵制克苏恩 (记忆化搜索 + 概率DP)
题意:模拟克苏恩打奴隶战对对方英雄所造成的伤害 题解:因为昨(今)天才写过记忆化搜索 所以这个就是送经验了 1A还冲了个榜 但是我惊奇的发现我数组明明就比数据范围开小了啊??? #include &l ...
- [bzoj4832][Lydsy1704月赛]抵制克苏恩
题目大意:有一个英雄和若干个所从,克苏恩会攻击$K$次,每次回随机攻击对方的一个人,造成$1$的伤害.现在对方有一名克苏恩,你有一些随从.如果克苏恩攻击了你的一名随从,若这名随从不死且你的随从数量不到 ...
- 【bzoj4832】[Lydsy1704月赛]抵制克苏恩 期望dp
Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q 同学会告诉你所有相关的细节.炉石传说是这样的一个游戏,每个玩家拥有一个 ...
- BZOJ.4832.[Lydsy1704月赛]抵制克苏恩(期望DP)
题目链接 \(f[s][i][j][k]\)表示还剩\(s\)次攻击,分别有\(i,j,k\)个血量为\(1,2,3\)的奴隶主时,期望受到伤害. 因为期望是倒推,所以这么表示从后往前求,注意\(a, ...
- [Bzoj4832][Lydsy2017年4月月赛]抵制克苏恩 (期望dp)
4832: [Lydsy2017年4月月赛]抵制克苏恩 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 673 Solved: 261[Submit][ ...
- 【BZOJ4832】[Lydsy2017年4月月赛]抵制克苏恩 概率与期望
[BZOJ4832][Lydsy2017年4月月赛]抵制克苏恩 Description 小Q同学现在沉迷炉石传说不能自拔.他发现一张名为克苏恩的牌很不公平.如果你不玩炉石传说,不必担心,小Q同学会告诉 ...
随机推荐
- mySQL多表查询与事务
一.范式 1. 什么是范式 1.1 什么是范式 范式:设置一个科学的.规范的数据库,需要满足的一些规则 1.2 有哪些范式 共有:6大范式 第1范式:1NF 满足最基本的要求 第2范式:2NF 在1N ...
- 13.Python略有小成(装饰器,递归函数)
Python(装饰器,递归函数) 一.开放封闭原则 软件面世时,不可能把所有的功能都设计好,再未来的一两年功能会陆续上线,定期更新迭代,软件之前所用的源代码,函数里面的代码以及函数的调用方式一般不 ...
- MyBatis入门学习笔记(一)
一.什么是MyBatis? Mybatis是一种“半自动化”的ORM实现,支持定制化 SQL.存储过程以及高级映射. 二.hibernate和mybatis对比 共同:采用ORM思想解决了实体和数据库 ...
- sql server添加sa用户和密码
昨天给网站“搬家”(更换服务器),我是在win7上安装的 sql server2012,安装过程很顺利,用“Windows 身份验证” 也可正常访问.但是用sa用户访问数据库出现了 错误:18456. ...
- C 语言实例 - 判断奇数/偶数
C 语言实例 - 判断奇数/偶数 C 语言实例 C 语言实例 以下实例判断用户输入的整数是奇数还是偶数. 实例 #include <stdio.h> int main() { int nu ...
- python——类与对象
__init__ 方法: 1.Init 初始化方法的返回值必须是None. 3.类没有定义阶段,函数有定义阶段(不调用不执行). 实例化时触发__init__方法执行,为对象添加属性.[t1=stu ...
- 在线获取键盘按键值(ascii码)工具
在线获取键盘按键值(ascii码)工具 http://www.bejson.com/othertools/keycodes/ 可以根据输入的值获取对应的键盘ascii码值
- 一篇关于完全动态凸包的paper(侵删)
先放原文,挖个坑,到时候再来说人话ε=(´ο`*))) 作者:Franco P. Preparata 出处:Computational geometry An introduction The tec ...
- jdk1.6与jdk1.7list集合排序区别与算法
源码分析: 在Collections.sort中: public static <T extends Comparable<? super T>> void sort(L ...
- sql常用操作(二)数据约束
1.1什么是数据约束: 对用户操作表的数据进行约束 1.2 默认值 作用: 当用户对使用默认值的字段不插入值的时候,就使用默认值. 注意: 1)对默认值字段插入null是可以的. 2)对默认值字段可以 ...