题目描述:

vjudge

POJ

题解:

二分答案+半平面交。

半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零。

我的eps值取的是$10^{-12}$,36ms,而且和样例一样。

(大力推荐)

代码:

#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x)<=eps)return ;
return x>?:-;
}
struct Point
{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
Point operator + (const Point&a)const{return Point(x+a.x,y+a.y);}
Point operator - (const Point&a)const{return Point(x-a.x,y-a.y);}
Point operator * (const double&a)const{return Point(x*a,y*a);}
Point operator / (const double&a)const{return Point(x/a,y/a);}
double operator * (const Point&a)const{return x*a.x+y*a.y;}
double operator ^ (const Point&a)const{return x*a.y-y*a.x;}
};
typedef Point Vector;
typedef vector<Point> Pol;
double ang(const Vector&a){return atan2(a.x,a.y);}
double lth(const Vector&a){return sqrt(a*a);}
Vector Vil(const Vector&a){return Vector(-a.y,a.x)/lth(a);}
struct Line
{
Point p;
Vector v;
Line(){}
Line(Point p,Vector v):p(p),v(v){}
Line operator + (const Vector&a)const{return Line(p+a,v);}
bool operator < (const Line&a)const{return ang(v)<ang(a.v);}
};
int n;
Point p[N],tp[N];
Vector vp[N];
Line s0[N],s[N],ts[N];
bool Onleft(Line l,Point p)
{
return dcmp(l.v^(p-l.p))>;
}
Point L_L(Line a,Line b)
{
double t = ((b.p-a.p)^(b.v))/(a.v^b.v);
return a.p+a.v*t;
}
double S_(Pol&P)
{
double ans = 0.0;
for(int i=,lim=(int)P.size();i<lim;i++)
ans+=((P[i-]-P[])^(P[i]-P[]));
return fabs(ans)/;
}
double bpmj()
{
int hd,tl;
ts[hd=tl=]=s[];
for(int i=;i<=n;i++)
{
while(hd<tl&&!Onleft(s[i],tp[tl-]))tl--;
while(hd<tl&&!Onleft(s[i],tp[hd]))hd++;
ts[++tl] = s[i];
if(!dcmp(s[i].v^ts[tl-].v))
{
tl--;
if(Onleft(ts[tl],s[i].p))ts[tl]=s[i];
}
tp[tl-]=L_L(ts[tl-],ts[tl]);
}
while(hd<tl&&!Onleft(ts[hd],tp[tl-]))tl--;
if(tl-hd<=)return ;
tp[tl]=L_L(ts[hd],ts[tl]);
Pol P;
for(int i=hd;i<=tl;i++)P.push_back(tp[i]);
return S_(P);
}
bool check(double mid)
{
for(int i=;i<=n;i++)s[i]=s0[i]+vp[i]*mid;
return dcmp(bpmj())>;
}
int main()
{
while(scanf("%d",&n)&&n!=)
{
for(int i=;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i=;i<n;i++)s0[i]=Line(p[i],p[i+]-p[i]);
s0[n]=Line(p[n],p[]-p[n]);
sort(s0+,s0++n);
for(int i=;i<=n;i++)
vp[i]=Vil(s0[i].v);
double l = 0.0,r = 5000.0;
while(dcmp(r-l))
{
double mid = (l+r)/;
if(check(mid))l=mid;
else r=mid;
}
printf("%lf\n",r);
}
return ;
}

poj3525 Most Distant Point from the Sea的更多相关文章

  1. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  2. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  3. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  4. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  5. 【POJ】【3525】Most Distant Point from the Sea

    二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...

  6. POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  7. POJ3525-Most Distant Point from the Sea(二分+半平面交)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3955   ...

  8. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  9. POJ3525:Most Distant Point from the Sea(二分+半平面交)

    pro:给定凸多边形,求凸多边形内的点到最近边界的最远距离. sol:显然是二分一个圆,使得圆和凸多边形不相交,但是这样很难实现. 由于是凸多边形,我们可以把二分圆转化为二分凸多边形的移动. 如果每一 ...

随机推荐

  1. HTML5新标签介绍

    一.Datalist 标签 <input list="browsers"> <datalist id="browsers">   < ...

  2. 洛谷 P2895 [USACO08FEB]流星雨Meteor Shower 解题报告

    一起来看流星雨吧(话说我还没看到过流星雨呢) 题目 Problem 小A则听说另一个骇人听闻的消息: 一场流星雨即将袭击整个霸中,由于流星体积过大,它们无法在撞击到地面前燃烧殆尽,届时将会对它撞到的一 ...

  3. 用Open Live Writer写博体验

    感觉还蛮方便的--openlivewriter第一博!

  4. Linux下无法挂载U盘

    大概的错误信息是这样的: Error mounting /dev/sdb4 at /media/xxx/xx: Command-line`mount -t "ntfs" -o&qu ...

  5. github 新建一个分支

    我能说今天在github上新建分支的时候懵逼了半天吗..为了下次不再懵逼,还是在这里记录一下吧.. 进入你的项目---code---Branch----点击那个倒三角-----你会发现一个输入框(这是 ...

  6. 机器学习框架ML.NET学习笔记【5】多元分类之手写数字识别(续)

    一.概述 上一篇文章我们利用ML.NET的多元分类算法实现了一个手写数字识别的例子,这个例子存在一个问题,就是输入的数据是预处理过的,很不直观,这次我们要直接通过图片来进行学习和判断.思路很简单,就是 ...

  7. mysql非常全的和完整的总结

    (1)数据类型 类型 备注 tinyint/smallint/mediumint/int/bigint 1B/2B/3B/4B/8B float/double 单精度/双精度浮点型 decimal 不 ...

  8. VS连接Access数据库--连接字符串及执行查询语句的方法(增删改查,用户名查重,根据用户获取密码查询)

    ACCESS数据的连接及语句执行操作,不难,久不用会生疏,每次都要找资料,干脆自己整理下,记录下来,需要的时候,直接查看,提高效率.也供初学者参考 1.连接字符串 public static stri ...

  9. this的那点事

    对于很多初学者,this总是搞得我们晕头转向. 现在,我就简单的总结一下关于this的那点事. this在函数定义时经常是不能确定的,只有在函数执行的时候才能最终确定this的归属.this总是指向最 ...

  10. mui轮播图

    轮播组件是mui提供的一个核心组件,在该核心组件基础上,衍生出了图片轮播.可拖动式图文表格.可拖动式选项卡.左右滑动9宫格等组件,这些组件有较多共同点.Dom构造: <div class=&qu ...