poj3525 Most Distant Point from the Sea
题目描述:
题解:
二分答案+半平面交。
半径范围在0到5000之间二分,每次取$mid$然后平移所有直线,判断半平面交面积是否为零。
我的eps值取的是$10^{-12}$,36ms,而且和样例一样。
(大力推荐)
代码:
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = ;
const double eps = 1e-;
int dcmp(double x)
{
if(fabs(x)<=eps)return ;
return x>?:-;
}
struct Point
{
double x,y;
Point(){}
Point(double x,double y):x(x),y(y){}
Point operator + (const Point&a)const{return Point(x+a.x,y+a.y);}
Point operator - (const Point&a)const{return Point(x-a.x,y-a.y);}
Point operator * (const double&a)const{return Point(x*a,y*a);}
Point operator / (const double&a)const{return Point(x/a,y/a);}
double operator * (const Point&a)const{return x*a.x+y*a.y;}
double operator ^ (const Point&a)const{return x*a.y-y*a.x;}
};
typedef Point Vector;
typedef vector<Point> Pol;
double ang(const Vector&a){return atan2(a.x,a.y);}
double lth(const Vector&a){return sqrt(a*a);}
Vector Vil(const Vector&a){return Vector(-a.y,a.x)/lth(a);}
struct Line
{
Point p;
Vector v;
Line(){}
Line(Point p,Vector v):p(p),v(v){}
Line operator + (const Vector&a)const{return Line(p+a,v);}
bool operator < (const Line&a)const{return ang(v)<ang(a.v);}
};
int n;
Point p[N],tp[N];
Vector vp[N];
Line s0[N],s[N],ts[N];
bool Onleft(Line l,Point p)
{
return dcmp(l.v^(p-l.p))>;
}
Point L_L(Line a,Line b)
{
double t = ((b.p-a.p)^(b.v))/(a.v^b.v);
return a.p+a.v*t;
}
double S_(Pol&P)
{
double ans = 0.0;
for(int i=,lim=(int)P.size();i<lim;i++)
ans+=((P[i-]-P[])^(P[i]-P[]));
return fabs(ans)/;
}
double bpmj()
{
int hd,tl;
ts[hd=tl=]=s[];
for(int i=;i<=n;i++)
{
while(hd<tl&&!Onleft(s[i],tp[tl-]))tl--;
while(hd<tl&&!Onleft(s[i],tp[hd]))hd++;
ts[++tl] = s[i];
if(!dcmp(s[i].v^ts[tl-].v))
{
tl--;
if(Onleft(ts[tl],s[i].p))ts[tl]=s[i];
}
tp[tl-]=L_L(ts[tl-],ts[tl]);
}
while(hd<tl&&!Onleft(ts[hd],tp[tl-]))tl--;
if(tl-hd<=)return ;
tp[tl]=L_L(ts[hd],ts[tl]);
Pol P;
for(int i=hd;i<=tl;i++)P.push_back(tp[i]);
return S_(P);
}
bool check(double mid)
{
for(int i=;i<=n;i++)s[i]=s0[i]+vp[i]*mid;
return dcmp(bpmj())>;
}
int main()
{
while(scanf("%d",&n)&&n!=)
{
for(int i=;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
for(int i=;i<n;i++)s0[i]=Line(p[i],p[i+]-p[i]);
s0[n]=Line(p[n],p[]-p[n]);
sort(s0+,s0++n);
for(int i=;i<=n;i++)
vp[i]=Vil(s0[i].v);
double l = 0.0,r = 5000.0;
while(dcmp(r-l))
{
double mid = (l+r)/;
if(check(mid))l=mid;
else r=mid;
}
printf("%lf\n",r);
}
return ;
}
poj3525 Most Distant Point from the Sea的更多相关文章
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- 【POJ】【3525】Most Distant Point from the Sea
二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ3525-Most Distant Point from the Sea(二分+半平面交)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3955 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ3525:Most Distant Point from the Sea(二分+半平面交)
pro:给定凸多边形,求凸多边形内的点到最近边界的最远距离. sol:显然是二分一个圆,使得圆和凸多边形不相交,但是这样很难实现. 由于是凸多边形,我们可以把二分圆转化为二分凸多边形的移动. 如果每一 ...
随机推荐
- 安装mongo可视化管理工具mongo admin
https://github.com/mrvautin/adminMongo github地址 安装要求下载下来,然后安装即可 中间出现了问题: 说是开了代理,可以关掉代理之后,然后把下载下来的删了, ...
- Kaggle 数据挖掘比赛经验分享
文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 来源 | 腾讯广告算法大赛 作者 | 陈成龙 Kaggle 于 2010 年创立,专注数据科学,机器学 ...
- 洛谷 P2895 [USACO08FEB]流星雨Meteor Shower 解题报告
一起来看流星雨吧(话说我还没看到过流星雨呢) 题目 Problem 小A则听说另一个骇人听闻的消息: 一场流星雨即将袭击整个霸中,由于流星体积过大,它们无法在撞击到地面前燃烧殆尽,届时将会对它撞到的一 ...
- 洛谷P3831 回家的路
题目背景 SHOI2012 D2T1 题目描述 \(2046\) 年 \(OI\) 城的城市轨道交通建设终于全部竣工,由于前期规划周密,建成后的轨道交通网络由\(2n\)条地铁线路构成,组成了一个\( ...
- 洛谷P2971 牛的政治Cow Politics
题目描述 Farmer John's cows are living on \(N (2 \leq N \leq 200,000)\)different pastures conveniently n ...
- dom4j解析简单的xml文件 解析元素并封装到对象
package cn.itcast.xml; import cn.itcast.domain.Book; import org.dom4j.Document; import org.dom4j.Doc ...
- CF 700E
构建后缀自动机,求出后缀树 比较明显的dp 设 \(f[i]\) 表示从上而下到达当前点能够满足条件的最优值 只需要检查父亲节点是否在当前串中出现过两次就行了 这个判断用 \(endpos\) 来判断 ...
- VS Code开发调试.NET Core 2.0
VS Code开发调试.NET Core 2.0 使用VS Code 从零开始开发调试.NET Core 2.0.无需安装VS 2017 15.3+即可开发调试.NET Core 2.0应用. VS ...
- Ubuntu系统修改服务器的静态ip地址
Ubuntu 16.04 #vi /etc/network/interfaces auto lo iface lo inet loopback auto ens3 iface ens3 inet st ...
- NodeJS学习视频
腾讯课堂初级课程 https://ke.qq.com/webcourse/index.html#course_id=196698&term_id=100233129&taid=1064 ...