题意:

  • 从1到n,n个数,从左向右依次排列。

    给定两种形式的约束条件:

    1.xi与yi的最大距离为dk

    2.xi与yi的最小距离为dk

    问满足这些限定条件的情况下,数1和n的最大距离是多少?(若约束条件相互矛盾则输出-1,若最大距离能够为无穷大则输出-2)

    知识补充:

    • 差分约束系统的概念:由n个变量和m个约束条件(实数)组成。且都是形如:
      xi−yj≤bk(x,y为变量,b为实数)

      的形式。

    • 用Bellman-Ford算法求解差分约束系统:因为最短路三角不等式:d[v]−d[u]≤e[u,v]与差分约束的不等式形式一样,故构建j到i长度为bk的边来建成一个图,因为可能存在负边所以用Bellman-Ford算法来求解最短路,终于得到的d[i]数组是满足该差分约束系统的一个可行解。
    • 注:若{d[1], d[2], ….. ,d[n]}是差分约束系统的一个可行解,那么{d[1] + x, d[2] + x, ….., d[n] + x}也是可行解。
    • 关于d[n]数组的初始化:假设将原点s到每一个顶点的距离都设置为0,最后求出来的可行解满足这些点相互之间距离最小。假设将当中一个点设为起点。其他点的距离都设置设为INF,那么终于求出来的可行解,满足该起点,到其他每一个点相互之间的距离最大。

    思路:

  • 题目为有三个限制条件的差分约束系统,即:

    d[i]−d[i+1]≤0
    d[BL]−d[AL]≤DL
    d[AD]−d[BD]≤DD

    依据这三个不等式建立图,这里核心难点是:为什么d[n] - d[1](即起点1到终点n的最短距离)就是对于约束条件下,1到n的最长距离?(这里尚未思考明确…..)

代码(代码中的Bellman-Ford算法经过防止负圈优化):

#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
const int INF = 0x3fffffff;
struct edge{int from, to, cost;}E[100009];
int v, n, m, size; void input(void) {
int x, y, z;
for (int i = 0; i < n; i++) {
scanf("%d%d%d", &x, &y, &z);
E[size++] = (edge){x - 1, y - 1, z};
}
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &x, &y, &z);
E[size++] = (edge){y - 1, x - 1, -z};
}
} int bellman_ford(void) {
int d[v];
fill(d, d + v, INF);
d[0] = 0;
for (int k = 0; k < v; k++) { //因为可能存在负圈会无限更新的情况要注意设置更新次数上限为顶点个数。
bool update = false;
for (int i = 0; i < size; i++) {
if(d[E[i].to] > d[E[i].from] + E[i].cost && d[E[i].from] < INF) {
update = true;
d[E[i].to] = d[E[i].from] + E[i].cost;
}
}
if(!update) break;
}
if(d[0] < 0) return -1;
if(d[v - 1] == INF) return -2;
return d[v - 1];
} int main(void)
{
while (~scanf("%d%d%d", &v, &n, &m)) {
size = 0;
for (int i = 0; i < v - 1; i++) {
E[size++] = (edge){i + 1, i, 0}; //这个形式非常有趣
}
input();
printf("%d\n", bellman_ford());
}
return 0;
}

poj3169 差分约束系统的更多相关文章

  1. POJ3169差分约束系统

    题意:有n头牛,编号为1到n,对于关系好的ml头牛,al和bl之间的距离不大于dl,关系差的md头牛,ad和bd之间的距离不大于dd,求第1头牛和第n头牛之间的距离 分析:这是一道差分约束系统的题目, ...

  2. 【图论】POJ-3169 差分约束系统

    一.题目 Description Like everyone else, cows like to stand close to their friends when queuing for feed ...

  3. UVA11478 Halum [差分约束系统]

    https://vjudge.net/problem/UVA-11478 给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的 ...

  4. BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5395  Solved: 1750[Submit][Status ...

  5. ACM/ICPC 之 差分约束系统两道(ZOJ2770-POJ1201)

    当对问题建立数学模型后,发现其是一个差分方程组,那么问题可以转换为最短路问题,一下分别选用Bellmanford-SPFA解题 ZOJ2770-Burn the Linked Camp //差分约束方 ...

  6. POJ1201 Intervals(差分约束系统)

    与ZOJ2770一个建模方式,前缀和当作点. 对于每个区间[a,b]有这么个条件,Sa-Sb-1>=c,然后我就那样连边WA了好几次. 后来偷看数据才想到这题还有两个隐藏的约束条件. 这题前缀和 ...

  7. UVA 11374 Halum (差分约束系统,最短路)

    题意:给定一个带权有向图,每次你可以选择一个结点v 和整数d ,把所有以v为终点的边权值减少d,把所有以v为起点的边权值增加d,最后要让所有的边权值为正,且尽量大.若无解,输出结果.若可无限大,输出结 ...

  8. Burn the Linked Camp(bellman 差分约束系统)

    Burn the Linked Camp Time Limit: 2 Seconds      Memory Limit: 65536 KB It is well known that, in the ...

  9. zoj 2770 Burn the Linked Camp (差分约束系统)

    // 差分约束系统// 火烧连营 // n个点 m条边 每天边约束i到j这些军营的人数 n个兵营都有容量// Si表示前i个军营的总数 那么 1.Si-S(i-1)<=C[i] 这里 建边(i- ...

随机推荐

  1. centos安装nvidia驱动

    大部分 Linux 发行版都使用开源的显卡驱动 nouveau,对于 nvidia 显卡来说,还是闭源的官方驱动的效果更好.最明显的一点是,在使用 SAC 拾取震相的时候,使用官方显卡驱动在刷新界面的 ...

  2. 2017-2-10 bash基础脚本

    练习:写一脚本,实现如下功能: 1.让用户通过键盘输入一个用户名,如果用户不存在就退出: 2.如果其UID等于其GID,就说它是个"good guy" 3.否则,就说它是个“bad ...

  3. CF17E Palisection(manacher)

    题意 给出一个长度为N的字符串S,问S中有多少个回文子串对(i,j)使得i,j在S中的位置相交?(N<=2*106) 题解 #include<iostream> #include&l ...

  4. 紫书 习题 8-25 UVa 11175 (结论证明)(配图)

    看了这篇博客https://blog.csdn.net/u013520118/article/details/48032599 但是这篇里面没有写结论的证明, 我来证明一下. 首先结论是对于E图而言, ...

  5. C++ 学习笔记(一些新特性总结3)

    C++ 学习笔记(一些新特性总结3) public.protected 和 private 继承 public 继承时,基类的存取限制是不变的. class MyClass { public: // ...

  6. VS2008 集成Lua解释器

    1. 登陆官网下载源代码 -> www.lua.org -> get started ->  installing  选择系统类型(这里是Windows的,所下面载 luaDist) ...

  7. JavaScript编程随笔

    尽管说用JS非常多年了,可是却一直停留在肤浅的阶段,对JS的机制原理依旧是一知半解,比如:闭包.尽管能说出一二.却不能说出三四,确实羞愧.近期恶补一番.并将比較与大家分享,希望对大家有些帮助. 闭包 ...

  8. iOS开发实践之GET和POST请求

    GET和POST请求是HTTP请求方式中最最为常见的. 在说请求方式之前先熟悉HTTP的通信过程: 请求 1.请求行 : 请求方法.请求路径.HTTP协议的版本号 GET /MJServer/reso ...

  9. HDFS的配额

  10. tnsnames.ora文件说明

    目录位置 unix:$ORACLE_HOME/network/admin WINDOW:%ORACLE_HOME%\network\admin 设置相应的环境变量:TNS_ADMIN tnsname. ...