1264: [AHOI2006]基因匹配Match

题目:传送门

简要题意:

  给出两个序列。每个序列都由n种不同的数字组成,保证每个序列种每种数字都会出现5次(位置不一定一样),也就是序列长度为5*n啦。

  求这两个序列的最长公共子序列。

题解:

  假的(nlogn)最长公共子序列算法

  本蒟蒻看完题:

    woc!大水题,这不是就是动态规划求最长公共子序列吗~

  看完数据范围...ORZ那么大!!!最长公共子序列的基础算法要(n^2)...完了...不会...瞎搞???

  这么皮,怎么破!

  tkj神犇:so easy~~(orz...%%%)

  好的,%完师兄...

  真正的正解:

  本题的突破口其实就在于每种数只出现5次。

  那么我们可以先把第一个数列种每种数出现的位置用pos[]记录,然后放到第二个数列。

  举个栗子,就拿样例来说:

  第一个:1 1 2 2 1 1 2 1 2 2

  那么pos[1]=1,2,5,6,8       pos[2]=3,4,7,9,10

  然后放回第二个数列:1 2 2 2 1 1 2 2 1 1

  用一个新的s[]记录新数列,s[]=8 6 5 2 1,10 9 7 4 3, 10 9 7 4 3...(以此类推)

  那么我们只需要求出这个新数列的最长上升子序列就ok啦~(原理十分简单,模拟一下就ok)

  这里还有一个小细节需要注意:不难发现,我们更新新数列的时候每种数字的位置都是按倒序放的,这样就可以避免在第二个数列中的一个位置重复选择(重点)。

  好啦,这样子时间复杂度就为(nlongn)

  但是...是假的...因为要是每种数不止出现五次...那就ORZ吧!

AC代码:

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define qread(x)x=read();
using namespace std;
inline int read()
{
int f=,x=;char ch;
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
struct node1
{
int pos[],id;
node1(){id=;}
}a[];
struct node2
{
int pos[],id;
node2(){id=;}
}b[];
int s[];
int n,N,len;
bool cmp(int n1,int n2)
{
return n1>n2;
}
int f[];//表示长度为i的最长上升子序列的末尾(最小)
int erfen(int x)
{
int l=,r=len,ans=;
while(l<=r)
{
int mid=(l+r)/;
if(f[mid]>=s[x])
{
ans=mid;
r=mid-;
}
else l=mid+;
}
return ans;
}
int main()
{
qread(n);
for(int i=;i<=n*;i++)
{
int x;qread(x);
a[x].id++;
a[x].pos[a[x].id]=i;
}
for(int i=;i<=n;i++)sort(a[i].pos+,a[i].pos++);
for(int i=;i<=n*;i++)
{
int x;qread(x);
int k;
k=a[x].id;
for(int j=i*-;j<=i*;j++)
{
s[j]=a[x].pos[k];
k--;
}
}
N=n*;
f[]=s[];len=;
for(int i=;i<=N;i++)
{
if(s[i]>f[len])
f[++len]=s[i];
else
{
int j=erfen(i);
f[j]=s[i];
}
}
printf("%d\n",len);
return ;
}

1264: [AHOI2006]基因匹配Match(动态规划神题)的更多相关文章

  1. BZOJ 1264 AHOI2006 基因匹配Match 动态规划+树状数组

    题目大意:给定n个数和两个长度为n*5的序列,每一个数恰好出现5次,求两个序列的LCS n<=20000.序列长度就是10W.朴素的O(n^2)一定会超时 所以我们考虑LCS的一些性质 LCS的 ...

  2. 1264: [AHOI2006]基因匹配Match

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 982  Solved: 635[Submit][S ...

  3. bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)

    1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 793  Solved: 503[Submit][S ...

  4. BZOJ 1264: [AHOI2006]基因匹配Match( LCS )

    序列最大长度2w * 5 = 10w, O(n²)的LCS会T.. LCS 只有当a[i] == b[j]时, 才能更新答案, 我们可以记录n个数在第一个序列中出现的5个位置, 然后从左往右扫第二个序 ...

  5. bzoj 1264: [AHOI2006]基因匹配Match

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

  6. BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP

    1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...

  7. bzoj 1264: [AHOI2006]基因匹配Match (树状数组优化dp)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1264 思路: n大小为20000*5,而一般的dp求最长公共子序列复杂度是 n*n的,所以我 ...

  8. BZOJ1264 [AHOI2006]基因匹配Match 动态规划 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1264 题意概括 给出两个长度为5*n的序列,每个序列中,有1~n各5个. 求其最长公共子序列长度. ...

  9. bzoj 1264 [AHOI2006]基因匹配Match dp + 树状数组

    思路:好难想啊, 考虑到应该从每个数字只有5个数字下手, 但是不知道到底该怎么写.. 首先我们将第一个串按数字的种类分类, 每一类里面有5个, 然后将第二个串里面的数字一个一个加,如果一个加入的第 i ...

随机推荐

  1. angular-API

    AngularJS 全局 API 用于执行常见任务的 JavaScript 函数集合,如: 比较对象 迭代对象 转换对象 API 描述 angular.lowercase() 转换字符串为小写 ang ...

  2. 极路由设置共享磁盘密码、跨网访问samba服务

    极路由插上移动硬盘后会自动建立samba服务器,但我们没法去配置哪些盘符需要密码,这样只要在同一个wifi下的电脑都能去访问这些东西了,比较弱智.另外我还想再公司中去读写这个移动硬盘. 设置密码 首先 ...

  3. ArcGIS Server 10.2 公布Oracle11g数据源的 Feature Service

    安装好arcgis server 10.2及 Desktop 而且确保 arcgis server manager 能够正常启动执行载入服务 1.Oracle 配置 安装好Oracleserver端程 ...

  4. Linux内核编译測试

    内核编译: Step 1:配置内核编译选项. make menuconfig Optional Step :排除编译结果文件(.o)等之间的依赖性. make mrproper Optional St ...

  5. js中callback执行

    <!DOCTYPE HTML> <html> <head> <meta charset="GBK" /> <title> ...

  6. Git 跟 GitHub 是什么关系?

    Git 跟 GitHub 是什么关系? 大概就是「魔兽争霸」与「对战平台」的关系吧. git是一个版本控制工具github是一个用git做版本控制的项目托管平台. git是一个版本管理工具,githu ...

  7. nyoj--214--单调递增子序列(二)(二分查找+LIS)

    单调递增子序列(二) 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 给定一整型数列{a1,a2...,an}(0<n<=100000),找出单调递增最长子序 ...

  8. 9.variant move function change_cast

    包含的头文件 #include <iostream> #include <string> #include <boost/array.hpp> //异构的容器 #i ...

  9. 固定执行计划-SQL PROFILE手工绑定

    固定(稳定)执行计划 你的应用的功能时快时慢,变化比较大,功能的性能能够保持一种稳定的状态,ORACLE 固定执行计划,采用以下这几种方式 oracle 9i使用 Outline oracle 10g ...

  10. (转载)ListView与ScrollView冲突的4种解决方案

    问题解决方案1.手动设置ListView高度    经过测试发现,在xml中直接指定ListView的高度,是可以解决这个问题的,但是ListView中的数据是可变的,实际高度还需要实际测量.于是手动 ...