BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路:
Xor的期望???怕你不是在逗我。
按为期望,新技能get
剩下的就是游走了。
代码:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
struct pnt{
int hd;
int ind;
}p[];
struct ent{
int twd;
int lst;
int vls;
}e[];
double a[][];
int cnt;
int n,m;
void ade(int f,int t,int v)
{
cnt++;
e[cnt].vls=v;
e[cnt].twd=t;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
p[f].ind++;
return ;
}
void G_(void)
{
for(int i=;i<=n;i++)
{
int h=i;
for(int j=i+;j<=n;j++)if(fabs(a[h][i])<fabs(a[j][i]))h=j;
if(h!=i)for(int j=i;j<=n+;j++)std::swap(a[i][j],a[h][j]);
for(int j=i+;j<=n;j++)
{
double s=a[j][i]/a[i][i];
for(int k=i;k<=n+;k++)a[j][k]-=a[i][k]*s;
}
}
for(int i=n;i>;i--)
{
for(int j=i-;j>;j--)
{
a[j][n+]-=a[i][n+]/a[i][i]*a[j][i];
}
}
return ;
}
int main()
{
// freopen("a.in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
ade(a,b,c);if(a!=b)ade(b,a,c);
}
double ans=;
for(int i_=;(1ll<<i_)<=(long long)(1e9);i_++)
{
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
{
a[i][i]=p[i].ind;if(i==n)continue;
for(int i__=p[i].hd;i__;i__=e[i__].lst)
{
int j=e[i__].twd;
if(e[i__].vls&(<<i_))a[i][j]+=1.00,a[i][n+]+=1.00;
else a[i][j]-=1.00;
}
}
G_();double ps=a[][n+]/a[][];
ans+=ps*(1ll<<i_);
}
printf("%.3lf\n",ans);
return ;
}
BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)的更多相关文章
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- 【BZOJ2337】XOR和路径(高斯消元)
题目链接 大意 给出\(N\)个点,\(M\)条边的一张图,其中每条边都有一个非负整数边权. 一个人从1号点出发,在与该点相连的边中等概率的选择一条游走,直到走到\(N\)号点. 问:将这条路径上的边 ...
- BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...
- bzoj2337 XOR和路径——高斯消元
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性 ...
- HDU2262;Where is the canteen(高斯消元+期望)
传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...
随机推荐
- SLF4j 和 common-logging
http://blog.csdn.net/xydds/article/details/51606010
- cocos2d-x 粒子效果
大规模运动的物体通常有两种方法实现 1.使用帧动画来模拟 2,粒子效果 粒子系统有CCParticleSystem类实现,CCParticleSystem实现了对粒子的控制与调度,对粒子的操作包含: ...
- 如何解读「量子计算应对大数据挑战:中国科大首次实现量子机器学习算法」?——是KNN算法吗?
作者:知乎用户链接:https://www.zhihu.com/question/29187952/answer/48519630 我居然今天才看到这个问题,天……本专业,有幸听过他们这个实验的组会来 ...
- DNS SOA NS区别
转自 http://bbs.51cto.com/thread-908637-1.html NS服务器里有两个比较重要的记录.一个叫SOA记录(起始授权机构) 一个叫NS(Name Server)记录( ...
- [NOIP2015模拟10.27] 挑竹签 解题报告(拓扑排序)
Description 挑竹签——小时候的游戏夏夜,早苗和诹访子在月光下玩起了挑竹签这一经典的游戏.挑竹签,就是在桌上摆上一把竹签,每次从最上层挑走一根竹签.如果动了其他的竹签,就要换对手来挑.在所有 ...
- Format operator
The argument of write has to be a string, so if we want to put other values in a file, we have to co ...
- jqueryValidator自定义校验规则的一种方式(不覆盖源码)
1.封装自定义验证方法-validate-methods.js /***************************************************************** j ...
- 认识javascript的引擎之--1
前言: 一:每一款浏览器里面都能执行js脚本,那是因为制造商在浏览器里面加入了js引擎.也就是说js引擎在浏览器里面占有一席之地. 1.开始的时候js处于沉睡状态,直到运行页面遇到 <scrip ...
- PHP接收GET中文参数乱码的原因及解决方案
方案1: $str = iconv("gb2312","utf-8",$str); 方案2: mb_convert_encoding($str, "u ...
- The view 'Index' or its master was not found or no view engine supports the
ASP.net MVC 5 WebApi部署IIS提示: 未找到视图“索引”或其母版视图,或没有视图引擎支持搜索的位置.搜索了以下位置: 其他设置一切正常 这种情况很有可能是,1.部署的路径中空格 ...