感知器算法 C++
We can estimate the weight values for our training data using stochastic gradient descent.
Stochastic gradient descent requires two parameters:
- Learning Rate: Used to limit the amount each weight is corrected each time it is updated.
- Epochs: The number of times to run through the training data while updating the weight.
These, along with the training data will be the arguments to the function.
There are 3 loops we need to perform in the function:
- Loop over each epoch.
- Loop over each row in the training data for an epoch.
- Loop over each weight and update it for a row in an epoch.
As you can see, we update each weight for each row in the training data, each epoch.
The loop is over until:
the iteration error is less than a user-specified error threshold or
a predetermined number of iterations have been completed.
Weights are updated based on the error the model made. The error is calculated as the difference between the expected output value and the prediction made with the candidate weights.
Notice that learning only occurs when an error is made, otherwise the weights are left unchanged.
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
#include <vector>
#include <cmath>
//the sign function
template <typename DataType, typename WeightType>
double sign(typename::std::vector<DataType> &data, typename::std::vector<WeightType> &weights) {
double result=0.0;
for(size_t i=0; i<weights.size(); ++i) {
result += data.at(i)*weights.at(i);
}
if(result >= 0.0)
return 1.0;
else
return 0.0;
}
template <typename DataType, typename WeightType>
void trainW(typename::std::vector<std::vector<DataType> > &vv, typename::std::vector<WeightType> &weights, const double& l_rate, const int& n_epoch) {
std::vector<DataType> v_data;
for(size_t i=0; i<weights.size(); ++i) {
weights.at(i)=0.0;
}
for(size_t i=0; i<n_epoch; ++i) {
double sum_error=0.0;
for(size_t j=0; j<vv.size(); ++j) {
v_data.clear();
for(size_t k=0; k<weights.size(); ++k) {
v_data.push_back(vv[j][k]);
}
for(typename::std::vector<DataType>::iterator it=v_data.begin();it!=v_data.end();++it) {
std::cout<<*it<<" ";
}
std::cout<<std::endl;
double prediction=sign(v_data, weights);
double error=vv[j].back()-prediction;
std::cout<<"expected: "<<vv[j].back()<<" prediction: "<<prediction<<" error: "<<error<<std::endl;
sum_error+=pow(error, 2.0);
for(size_t k=0; k<weights.size(); ++k) {
weights.at(k)=weights.at(k)+l_rate*error*vv[j][k];
}
}
std::cout<<"epoch = "<<i<<" error = "<<sum_error<<std::endl;
}
for(size_t i=0; i<weights.size(); ++i) {
std::cout<<weights.at(i)<<" ";
}
std::cout<<std::endl;
}
//make a prediction with weights, appended to the last column
template <typename DataType, typename WeightType>
void predictTestData(typename::std::vector<std::vector<DataType> > &vv, typename::std::vector<WeightType> &weights) {
std::vector<DataType> v_data;
for(size_t i=0;i<vv.size();++i) {
v_data.clear();
for(size_t j=0;j<weights.size();++j) {
v_data.push_back(vv[i][j]);
}
double signResult=sign(v_data,weights);
vv[i].push_back(signResult);
}
}
//display the data
template <typename DataType>
void DisplayData(typename::std::vector<std::vector<DataType> > &vv) {
std::cout<<"the number of data: "<<vv.size()<<std::endl;
for(size_t i=0; i<vv.size(); ++i) {
for(typename::std::vector<DataType>::iterator it=vv[i].begin(); it!=vv[i].end(); ++it) {
std::cout<<*it<<" ";
}
std::cout<<std::endl;
}
}
int main() {
std::ifstream infile_feat("PLA.txt");
std::string feature;
float feat_onePoint;
std::vector<float> lines;
std::vector<std::vector<float> > lines_feat;
lines_feat.clear();
std::vector<float> v_weights;
v_weights.clear();
v_weights.push_back(-0.1);
v_weights.push_back(0.206);
v_weights.push_back(-0.234);
while(!infile_feat.eof()) {
getline(infile_feat, feature);
if(feature.empty())
break;
std::stringstream stringin(feature);
lines.clear();
lines.push_back(1);
while(stringin >> feat_onePoint) {
lines.push_back(feat_onePoint);
}
lines_feat.push_back(lines);
}
infile_feat.close();
std::cout<<"display train data: "<<std::endl;
DisplayData(lines_feat);
double l_rate=0.1;
int n_epoch=5;
trainW(lines_feat, v_weights, l_rate, n_epoch);
//predictTestData(lines_feat, v_weights);
//std::cout<<"the predicted: "<<std::endl;
//DisplayData(lines_feat);
return 0;
}
感知器算法 C++的更多相关文章
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...
- [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...
- 感知器算法--python实现
写在前面: 参考: 1 <统计学习方法>第二章感知机[感知机的概念.误分类的判断] http://pan.baidu.com/s/1hrTscza 2 点到面的距离 3 梯度 ...
- Perceptron Algorithm 感知器算法及其实现
Rosenblatt于1958年发布的感知器算法,算是机器学习鼻祖级别的算法.其算法着眼于最简单的情况,即使用单个神经元.单层网络进行监督学习(目标结果已知),并且输入数据线性可分.我们可以用该算法来 ...
- 机器学习之感知器算法原理和Python实现
(1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学 ...
- 【2008nmj】Logistic回归二元分类感知器算法.docx
给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1], ...
- 感知器算法PLA
for batch&supervised binary classfication,g≈f <=> Eout(g)≥0 achieved through Eout(g)≈Ein(g ...
- 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...
随机推荐
- CAD插入非等比例的图块
主要用到函数说明: _DMxDrawX::InsertBlock 向控件数据库中插入一个图块,不用它插入匿名块.详细说明如下: 参数 说明 BSTR pszDwgFileName 图块定义的dwg 文 ...
- Django - 数据获取
Django - 数据获取 1.radio值获取 2.checkbox获取 3.select 获取 select 获取值,需要根据前端multiple来获取,get or getlist; 4.上传文 ...
- DNS详细解析过程【转】
转自:http://blog.csdn.net/crazw/article/details/8986504 先说一下DNS的几个基本概念: 一. 根域 就是所谓的“.”,其实我们的网址www.baid ...
- JavaScript day4(条件语句和条件运算符)
1. 布尔值 布尔值要么是 true 要么是 false .它非常像电路开关, true 是“开”,false 是“关”.这两种状态是互斥的. 2. if 语句 if 语句用于在代码中做条件判断.关键 ...
- How To : Modify ASM SYS password using asmcmd 11g R2 and upper
修改RAC 11gR2及以上版本的ASM的SYS的密码方法 [grid]$ asmcmd ASMCMD> orapwusr --modify --password sys Enter passw ...
- MySQL之中文乱码问题
创建 my.ini 文件,在该文件中添加以下内容,放在安装好的mysql根路径下: [client] default-character-set=utf8 [mysql] # 设置mysql客户端默认 ...
- Linux之网络文件共享服务(SamBa)
SMB:Server Message Block服务器消息块,IBM发布,最早是DOS网络文 件共享协议 Cifs:common internet file system,微软基于SMB发布 SAMB ...
- Python爬虫基础--分布式爬取贝壳网房屋信息(Server)
1. server_code01 2. server_code02 3. server_code03
- Java基础学习总结(42)——Log4j 2使用教程
1. 去官方下载log4j 2,导入jar包,基本上你只需要导入下面两个jar包就可以了(xx是乱七八糟的版本号): log4j-core-xx.jar log4j-api-xx.jar 2. 导入到 ...
- [HEOI 2016] sort
[HEOI 2016] sort 解题报告 码线段树快调废我了= = 其实这题貌似暴力分很足,直接$STL$的$SORT$就能$80$ 正解: 我们可以二分答案来做这道题 假设我们二分的答案为$a$, ...