感知器算法 C++
We can estimate the weight values for our training data using stochastic gradient descent.
Stochastic gradient descent requires two parameters:
- Learning Rate: Used to limit the amount each weight is corrected each time it is updated.
- Epochs: The number of times to run through the training data while updating the weight.
These, along with the training data will be the arguments to the function.
There are 3 loops we need to perform in the function:
- Loop over each epoch.
- Loop over each row in the training data for an epoch.
- Loop over each weight and update it for a row in an epoch.
As you can see, we update each weight for each row in the training data, each epoch.
The loop is over until:
the iteration error is less than a user-specified error threshold or
a predetermined number of iterations have been completed.
Weights are updated based on the error the model made. The error is calculated as the difference between the expected output value and the prediction made with the candidate weights.
Notice that learning only occurs when an error is made, otherwise the weights are left unchanged.
#include <iostream>
#include <string>
#include <fstream>
#include <sstream>
#include <vector>
#include <cmath>
//the sign function
template <typename DataType, typename WeightType>
double sign(typename::std::vector<DataType> &data, typename::std::vector<WeightType> &weights) {
double result=0.0;
for(size_t i=0; i<weights.size(); ++i) {
result += data.at(i)*weights.at(i);
}
if(result >= 0.0)
return 1.0;
else
return 0.0;
}
template <typename DataType, typename WeightType>
void trainW(typename::std::vector<std::vector<DataType> > &vv, typename::std::vector<WeightType> &weights, const double& l_rate, const int& n_epoch) {
std::vector<DataType> v_data;
for(size_t i=0; i<weights.size(); ++i) {
weights.at(i)=0.0;
}
for(size_t i=0; i<n_epoch; ++i) {
double sum_error=0.0;
for(size_t j=0; j<vv.size(); ++j) {
v_data.clear();
for(size_t k=0; k<weights.size(); ++k) {
v_data.push_back(vv[j][k]);
}
for(typename::std::vector<DataType>::iterator it=v_data.begin();it!=v_data.end();++it) {
std::cout<<*it<<" ";
}
std::cout<<std::endl;
double prediction=sign(v_data, weights);
double error=vv[j].back()-prediction;
std::cout<<"expected: "<<vv[j].back()<<" prediction: "<<prediction<<" error: "<<error<<std::endl;
sum_error+=pow(error, 2.0);
for(size_t k=0; k<weights.size(); ++k) {
weights.at(k)=weights.at(k)+l_rate*error*vv[j][k];
}
}
std::cout<<"epoch = "<<i<<" error = "<<sum_error<<std::endl;
}
for(size_t i=0; i<weights.size(); ++i) {
std::cout<<weights.at(i)<<" ";
}
std::cout<<std::endl;
}
//make a prediction with weights, appended to the last column
template <typename DataType, typename WeightType>
void predictTestData(typename::std::vector<std::vector<DataType> > &vv, typename::std::vector<WeightType> &weights) {
std::vector<DataType> v_data;
for(size_t i=0;i<vv.size();++i) {
v_data.clear();
for(size_t j=0;j<weights.size();++j) {
v_data.push_back(vv[i][j]);
}
double signResult=sign(v_data,weights);
vv[i].push_back(signResult);
}
}
//display the data
template <typename DataType>
void DisplayData(typename::std::vector<std::vector<DataType> > &vv) {
std::cout<<"the number of data: "<<vv.size()<<std::endl;
for(size_t i=0; i<vv.size(); ++i) {
for(typename::std::vector<DataType>::iterator it=vv[i].begin(); it!=vv[i].end(); ++it) {
std::cout<<*it<<" ";
}
std::cout<<std::endl;
}
}
int main() {
std::ifstream infile_feat("PLA.txt");
std::string feature;
float feat_onePoint;
std::vector<float> lines;
std::vector<std::vector<float> > lines_feat;
lines_feat.clear();
std::vector<float> v_weights;
v_weights.clear();
v_weights.push_back(-0.1);
v_weights.push_back(0.206);
v_weights.push_back(-0.234);
while(!infile_feat.eof()) {
getline(infile_feat, feature);
if(feature.empty())
break;
std::stringstream stringin(feature);
lines.clear();
lines.push_back(1);
while(stringin >> feat_onePoint) {
lines.push_back(feat_onePoint);
}
lines_feat.push_back(lines);
}
infile_feat.close();
std::cout<<"display train data: "<<std::endl;
DisplayData(lines_feat);
double l_rate=0.1;
int n_epoch=5;
trainW(lines_feat, v_weights, l_rate, n_epoch);
//predictTestData(lines_feat, v_weights);
//std::cout<<"the predicted: "<<std::endl;
//DisplayData(lines_feat);
return 0;
}
感知器算法 C++的更多相关文章
- Stanford大学机器学习公开课(三):局部加权回归、最小二乘的概率解释、逻辑回归、感知器算法
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为 ...
- 第三集 欠拟合与过拟合的概念、局部加权回归、logistic回归、感知器算法
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质 ...
- [置顶] 局部加权回归、最小二乘的概率解释、逻辑斯蒂回归、感知器算法——斯坦福ML公开课笔记3
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少 ...
- 感知器算法--python实现
写在前面: 参考: 1 <统计学习方法>第二章感知机[感知机的概念.误分类的判断] http://pan.baidu.com/s/1hrTscza 2 点到面的距离 3 梯度 ...
- Perceptron Algorithm 感知器算法及其实现
Rosenblatt于1958年发布的感知器算法,算是机器学习鼻祖级别的算法.其算法着眼于最简单的情况,即使用单个神经元.单层网络进行监督学习(目标结果已知),并且输入数据线性可分.我们可以用该算法来 ...
- 机器学习之感知器算法原理和Python实现
(1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学 ...
- 【2008nmj】Logistic回归二元分类感知器算法.docx
给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1], ...
- 感知器算法PLA
for batch&supervised binary classfication,g≈f <=> Eout(g)≥0 achieved through Eout(g)≈Ein(g ...
- 机器学习 —— 基础整理(六)线性判别函数:感知器、松弛算法、Ho-Kashyap算法
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在time ...
随机推荐
- [Windows Server 2012] WordPress安全设置方法
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:WordP ...
- strut2 拦截器 使用
拦截器是strut2里一个很振奋人心的应用.通过配置拦截器可以在action执行之前进行一些初始化或者是其他的操作,但是在action执行之后,返回结果就已经确定,结果是很难改变了(目前我还不知道怎么 ...
- Python语言之变量2(命名规则,类型转换)
1.命名规则 1.起始位为字母(大小写)或下划线('_') 2.其他部分为字母(大小写).下划线('_')或数字(0-9) 3.大小写敏感 2.先体验一把: #Ask the user their n ...
- Centos6.7 ELK日志系统部署
Centos6.7 ELK日志系统部署 原文地址:http://www.cnblogs.com/caoguo/p/4991602.html 一. 环境 elk服务器:192.168.55.134 lo ...
- Codeforces_733C
C. Epidemic in Monstropolis time limit per test 1 second memory limit per test 256 megabytes input s ...
- iOS实现图形编程可以使用三种API(UIKIT、Core Graphics、OpenGL ES及GLKit)
这些api包含的绘制操作都在一个图形环境中进行绘制.一个图形环境包含绘制参数和所有的绘制需要的设备特定信息,包括屏幕图形环境.offscreen 位图环境和PDF图形环境,用来在屏幕表面.一个位图或一 ...
- C/C++ 之数组排序
#include <stdio.h> #include <stdlib.h> void array_sort(int *a, int len) { int i, j, tmp; ...
- xadmin站点管理类
9. Xadmin xadmin是Django的第三方扩展,比使用Django的admin站点更强大也更方便. 文档:https://xadmin.readthedocs.io/en/latest/i ...
- BZOJ 2850: 巧克力王国 KDtree + 估价函数
Code: #include<bits/stdc++.h> #define maxn 100000 #define inf 1000000008 #define mid ((l+r)> ...
- java中一个数组不能放不同数据类型的值
在java中,数组不能放不同数据类型的值. 方法一: 多态 定义数组类型的时候定义为父类,而存进数组为父类的子类 public class test2 { public static void mai ...