[luogu2624 HNOI2008]明明的烦恼 (prufer+高精)
Solution
根据prufer序列做的题,具体可以看这里
还知道了一种避免高精除的方法quq
Code
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define F(i,a,b) for(register int i=(a);i<=(b);i++)
#define R(i,a,b) for(register int i=(b);i>=(a);i--)
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+c-48,c=getchar();
return x*f;
}
const int N=1010,D=10000;
struct Bign{
int da[N<<2],wei;
Bign() {clear();}
void out() {
printf("%d",da[wei]);
R(i,1,wei-1) printf("%04d",da[i]);
putchar('\n');
}
void clear() {memset(da,0,sizeof(da));wei=0;}
}ans;
Bign operator*(Bign a,int b) {
Bign res; res.wei=a.wei; int &wei=res.wei;
F(i,1,wei) res.da[i]=a.da[i]*b;
F(i,1,wei) res.da[i+1]+=res.da[i]/D,res.da[i]%=D;
while(res.da[wei+1]) wei++,res.da[wei+1]=res.da[wei]/D,res.da[wei]%=D;
return res;
}
int n,sum,cnt;
int a[N],p1[N],p2[N];
void get_p(int *p,int x) {
int sqr=sqrt(x);
F(i,2,sqr) while(x%i==0) x/=i,p[i]++;
if(x>1) p[x]++;
}
int main() {
n=read();
F(i,1,n) {
a[i]=read();if(a[i]==-1) continue;
cnt++;sum+=a[i]-1;
F(j,1,a[i]-1) get_p(p2,j);
}
if(sum>n-2) return putchar('0'),0;
F(i,1,n-2) get_p(p1,i);
F(i,1,n-2-sum) get_p(p2,i),get_p(p1,n-cnt);
F(i,1,n) p1[i]-=p2[i];
ans.da[1]=1;ans.wei=1;
F(i,1,n) F(j,1,p1[i]) ans=ans*i;
ans.out();
return 0;
}
[luogu2624 HNOI2008]明明的烦恼 (prufer+高精)的更多相关文章
- BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)
题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...
- bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2248 Solved: 898[Submit][Statu ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
- Luogu P2624 [HNOI2008]明明的烦恼 Prufer+组合+高精
好的我把标准版过了... 设$ r_i$为$i$的度数 首先,我们设 $ sum = \Sigma r_i-1$,$ tot $ 为所有能够确定度数的点 所以我们有 $ C ^ {sum} _{n-2 ...
- [BZOJ1005] [HNOI2008] 明明的烦恼 (prufer编码)
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N ...
- 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度
题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...
- bzoj1005: [HNOI2008]明明的烦恼 prufer序列
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的 ...
- BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)
题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...
随机推荐
- 个人常常使用的一些Eclipse技巧
引言 为了加快开发效率,方便地浏览源代码,重构以及重写一些方法等,Eclipse给我们提供了非常多方便的快捷键以及小技巧.以下是我总结一下经常使用的快捷键和技巧. 快捷键 清理控制台(console) ...
- iOS APP开发概述----学习笔记001
之前开发过一些Android APP,如今開始学习iOS开发,未来实际工作应该会用到.未雨绸缪. 一.了解其系统层次架构 其系统分层四层,其具体例如以下: 第一层:Core OS watermark/ ...
- Java 获取随机日期
/** * 获取随机日期 * @param beginDate 起始日期 * @param endDate 结束日期 * @return */ public static Date randomDat ...
- Openstack能解决这些问题吗?请各位大侠一起来讨论
1.10万规模的虚拟机,每一个虚拟机能够在不论什么一个计算节点上启动,该怎样做?计算,存储,网络都是怎么拉通与配合的? 2.用户怎样自己定义业务网络,怎样解决网络不够用的情况?正常就4096个vlan ...
- Codeforces--630E--A rectangle(规律)
E - A rectangle Crawling in process... Crawling failed Time Limit:500MS Memory Limit:65536KB ...
- codeforces 899F Letters Removing set+树状数组
F. Letters Removing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- hdu5673-Robot
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5673 好久没打BC,当时这场过了3题,hack了一个,马马虎虎吧,因为前三个题确实不难. 这个是那场的第 ...
- 动态title
<html><head><meta charset="uft8"><title>测试title</title></ ...
- Java.HttpClient绕过Https证书解决方案一
方案1 import javax.net.ssl.*; import java.io.*; import java.net.URL; import java.security.KeyManagemen ...
- BZOJ 4562 搜索...
思路: 统计入度&出度 每搜到一个点 in[v[i]]--,f[v[i]]+=f[t]; if(!in[v[i]])if(out[v[i]])q.push(v[i]);else ans+=f[ ...