今日SGU 5.1
SGU 100
题意:
普通的a+b
#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 2e5+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int main(){
int a,b;
cin>>a>>b;
cout<<a+b<<endl;
return ;
}
收获:无
SGU 101
题意:求一条欧拉通路,并记录路径
收获:
欧拉回路:1: 图G是连通的,不能有孤立点存在。
2: 对于无向图来说度数为奇数的点个数为0;对于有向图来说每个点的入度必须等于出度。
欧拉通路:1: 图G是连通的,无孤立点存在。
2: 对于无向图来说,度数为奇数的的点可以有2个或者0个,并且这两个奇点其中一个为起点另外一个为终点。对于有向图来说,可以存在两个点,其入度不等于出度,其中一个入度比出度大1,为路径的起点;另外一个出度比入度大1,为路径的终点。
欧拉回路:从一个点出发,经过图中的所以边且只经过一次,最终回到起点。
欧拉通路:就是欧拉回路可以不回到起点
回路就相当于通路的起点和终点是重合的
Euler算法:(个人见解),算法本质就是dfs起点,然后回溯的时候记录边,然后倒序输出,为什么倒序呢,可以画图比较好理解,最早回溯的一定是终点的边,因为通路其实就是一笔画,那你出现回溯的话,就说明接下来已经走不通了,就是画不下去了,也就是终点,同理第二次回溯的记录边
也就是倒二次的路
#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 1e2+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int n,tot;
struct edge{
int v,nt,id;
}e[maxn<<];
bool vis[maxn<<];
int pre[],in[];
void init(){ tot=;mt(pre,-);mt(in,);mt(vis,false); }
void add(int u,int v,int id){
e[tot].v=v;e[tot].nt=pre[u];e[tot].id=id;pre[u]=tot++;
e[tot].v=u;e[tot].nt=pre[v];e[tot].id=id;pre[v]=tot++;
}
vector<int> ans;
void Euler(int u){
for(int i=pre[u];~i;i=e[i].nt){
int v=e[i].v;
if(!vis[i]){
vis[i]=vis[i^]=true;
Euler(v);
ans.pb(i);
}
}
}
int main(){
init();
scanf("%d",&n);
int odd = ,st;
int u,v;
rep(i,,n+) { scanf("%d%d",&u,&v);add(u,v,i);in[u]++;in[v]++;st = u; }
rep(i,,) if(in[i]&) odd++,st=i;
if(!odd||odd==) {
Euler(st);
if(sz(ans)!=n) printf("No solution\n");
else repd(i,sz(ans)-,) printf("%d %c\n",e[ans[i]].id,(ans[i]&)?'-':'+');
}
else printf("No solution\n");
return ;
}
SGU 102
题意:求小于N的并且和N互质的数字的数量
收获:
就是求phi函数:
#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
#define all(a) a.begin(),a.end()
const int mod = 1e9+;
const int maxn = 1e2+;
const double eps = 1e-;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=;a%=mod; if(b<) return ; for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
ll x=,f=;char ch=getchar();
while (ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while (ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int euler_phi(int n){
int res = n;
int m = (int)sqrt(n);
rep(i,,m+) if(n % i == ){
res = res / i * (i-);
while(n % i == ) n /= i;
}
if(n > ) res = res / n * (n-);
return res;
}
//下面是预处理phi函数的板子
//void euler_phi()
//{
// for(int i = 1; i < N; i++) phi[i] = i;
// for(int i = 2; i < N; i++)
// if(phi[i] == i) //成立说明i是素数
// for(int j = i; j < N; j += i) //j要从i开始,这样可以处理素数的情况
// phi[j] = phi[j] / i * (i-1);
//}
//下面是关于欧拉函数的一些简单性质
//任意一个大于1的正整数,都可以写成一系列质数的积,即n=(p1^k1)*(p2^k2)*...*(pr^kr)
//1. 当p为素数时,phi(p^k)=p^k-p^(k-1)=(p^k)*(1-1/p) (k>=1)
//2. phi(1) = 1
//3. 如果n=p*q且gcd(p,q)==1,则phi(n)=phi(p)*phi(q)
//4. 因为n=(p1^k1)*(p2^k2)*...*(pr^kr),所以phi(n)=phi(p1^k1)*...*phi(pr^kr)
int main(){
int n;
scanf("%d",&n);
printf("%d\n",euler_phi(n));
}
今日SGU 5.1的更多相关文章
- 今日SGU 6.6
sgu 177 题意:给你一个一开始全是白色的正方形,边长为n,然后问你经过几次染色之后,最后的矩形里面 还剩多少个白色的块 收获:矩形切割,我们可以这么做,离散处理,对于每次染黑的操作,看看后面有没 ...
- 今日SGU 6.5
sgu 160 题意:给你n个数字 数字范围 1 到 m 问你从中取出任意数量的数字使得这些数字的积取模m最大 收获:dp,记录dp的路径 #include<bits/stdc++.h> ...
- 今日SGU 5.30
SGU 190 题意:给你个n*n的矩形,然后上面有几个点不能放东西,然后问你能不能用1*2的矩形,把能放 东西的地方放满 收获:一开始想的是,dfs,然后感觉这样的话,代码很长,而且很容易超时, 看 ...
- 今日SGU 5.29
sgu 299 题意:给你n个线段,然后问你能不能选出其中三个组成一个三角形,数字很大 收获:另一个大整数模板 那么考虑下为什么如果连续三个不可以的话,一定是不存在呢? 连续上个不合法的话,一定是 a ...
- 今日SGU 5.28
SGU 121 题意:给你一张图,问你每个顶点必须有黑白两条边(如果它的边数>=2),问你怎么染色,不行就输出no 收获:你会发现不行的情况只有一个单纯的奇数环的时候,反之我们交替染色即可 #i ...
- 今日SGU 5.27
SGU 122 题意:给你n个人,每个人有大于 N / 2(向上取整)的朋友,问你1这个人有一个书,每个人都想看,只能从朋友之间传递,然后最后回到了1这个人,问你 是否有解,然后有解输出路径 收获:哈 ...
- 今日SGU 5.26
#include<bits/stdc++.h> #define de(x) cout<<#x<<"="<<x<<endl ...
- 今日SGU 5.25
SGU 194 题意:无源汇有上下界的最大流 收获:https://wenku.baidu.com/view/0f3b691c59eef8c75fbfb35c.html #include<bit ...
- 今日SGU 5.23
SGU 223 题意:给你n*n的矩形,放k个国王,每个国王不能放在别的国王的8连边上,问你有多少种方法 收获:状态DP,因为每行的放置只会影响下一行,然我们就枚举每行的状态和对应的下一行的状态,当两 ...
- 今日SGU 5.22
SGU 296 题意:给你一个最多1000位的数,让你删除k位使得剩下的数最大 收获:贪心 #include<bits/stdc++.h> #define de(x) cout<&l ...
随机推荐
- Linux 图形文件压缩/解压缩实用程序,归档管理器。
1.ArkArk是KDE桌面环境默认的归档管理器,支持插件设置,允许你创建一个压缩包,查看压缩文件的内容,解压压缩包的内容到你所选定的目录.它能处理多种格式,包括 tar.gzip.bzip2.zip ...
- nodejs学习(一)--express+ejs生成项目
一.说一下 首先保证node环境已经安装完毕,npm能正常使用,安装可自行百度,比较简单,在此不做赘述. 二.直接开码 安装 npm install express express-generator ...
- Kubernetes本地私有仓库配置
实验环境 master 10.6.191.181 node1 10.6.191.182 node2 10.6.191.183 本地私有仓库 10.6.191.184 一.安装本地私有仓库 1.安装do ...
- Unity WebGL 窗口自适应
unity 打包好WebGL后,用文本编辑器编辑打包生成的 index.html 文件 在生成的html里面修改代码 <script type="text/javascript ...
- Win7下JDK环境变量设置批处理(转)
每次重装系统之后,都需要重新设置JDK环境变量 项目中有些入门小白看了网络上的设置环境变量的文章还是会设置错环境变量 提供一个批处理能够在Win7下运行(使用了setx命令),自动设置环境变量. cl ...
- centos同步网络北京时间
sudo yum -y install ntpdate ntp sudo ntpdate time.windows.com sudo hwclock -w
- VS 2015支持C语言和C++程序
先要安装C++的相关支持控件! 然后就可以使用VS编写C++或者C程序了. 默认支持的是C++,将后缀名改为C就是支持C了. 学习数据结构算法之类的,就可以通过VS来学习了. 安装 新建C++项目 C ...
- nyoj--19--擅长排列的小明(dfs)
擅长排列的小明 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 小明十分聪明,而且十分擅长排列计算.比如给小明一个数字5,他能立刻给出1-5按字典序的全排列,如果你想为难 ...
- 深度学习 —— 使用 gensim 实现 word2vec
在自然语言处理领域中,将单词(words)或词语(phases)映射到向量空间(vector space)中可以很容易就得到单词之间的相似度,因为向量空间中两个向量的相似度很容易求得,比如余弦相似度. ...
- java command not found
INSTALLATION PROCEDURE ON RASPBERRY PI The remaining steps should be performed directly on the conso ...