BZOJ 2330 - 差分约束系统
题目分析
差分约束
这里做个简单介绍:形如\(x_i - x_j >= d\)的不等式,可以联想到我们求最短路时\(d_v <= d_u + len\),则上式可以变形为\(x_i >= x_j + d\)即连一条j->i的长度为d的边并跑最长路,dis[i]则是满足条件的最小解(因为上面等式采用的>=号,所以求出的时最小解,同理当变形为\(x_j <= x_i - d\) 采用<= 时求出的是最大解)。
转
差分约束
这道题也是经典的差分约束,只是要注意几个问题:
- spfa判负环 无解
- 输入矛盾条件时直接无解
code
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N = 1e6 + 5;
typedef long long ll;
const ll OO = 0x3f3f3f3f;
int times[N];
int n, k;
ll dis[N];
int ecnt, adj[N], go[N << 2], nxt[N << 2], len[N << 2];
bool vst[N];
inline void addEdge(int u, int v, int l){
nxt[++ecnt] = adj[u], adj[u] = ecnt, go[ecnt] = v, len[ecnt] = l;
}
inline int read(){
int i = 0, f = 1;char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') ch = getchar(), f = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar())
i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(ll x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
inline bool spfa(){
static int que[N], qn;
for(int i = 1; i <= n; i++) dis[i] = -OO;
dis[0] = 0;
que[qn = 1] = 0;
vst[0] = true;
for(int ql = 1; ql <= qn; ql++){
int u = que[ql];
vst[u] = false;
times[u]++;
if(times[u] == n) return false;
for(int e = adj[u]; e; e = nxt[e]){
int v = go[e];
if(dis[v] < dis[u] + len[e]){
dis[v] = dis[u] + len[e];
if(!vst[v]) vst[v] = true, que[++qn] = v;
}
}
}
return true;
}
int main(){
n = read(), k = read();
for(int i = n; i >= 1; i--) addEdge(0, i, 1);
for(int i = 1; i <= k; i++){
int x = read(), a = read(), b = read();
switch(x){
case 1:{
if(a != b){
addEdge(a, b, 0);
addEdge(b, a, 0);
}
break;
}
case 2:{
if(a == b){
printf("-1");
return 0;
}
addEdge(a, b, 1);
break;
}
case 3:{
if(a != b)
addEdge(b, a, 0);
break;
}
case 4:{
if(a == b){
printf("-1");
return 0;
}
addEdge(b, a, 1);
break;
}
case 5:{
if(a != b)
addEdge(a, b, 0);
break;
}
default: break;
}
}
if(!spfa()){
printf("-1");
return 0;
}
ll ans = 0;
for(int i = 1; i <= n; i++){
ans += dis[i];
}
wr(ans);
return 0;
}
BZOJ 2330 - 差分约束系统的更多相关文章
- BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5395 Solved: 1750[Submit][Status ...
- bzoj 2330 [SCOI2011]糖果(差分约束系统)
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3574 Solved: 1077[Submit][Status ...
- BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA
最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...
- BZOJ 2330 糖果 差分约束求最小值
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2330 题目大意: 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果 ...
- bzoj 4500: 矩阵 差分约束系统
题目: Description 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 选择一行, 该行每个格子的权值加1或减1. 选择一列, 该列每个格子的权值加1或减1. 现在有K ...
- bzoj2330: [SCOI2011]糖果 差分约束系统
幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候 ...
- Bzoj1202/洛谷P2294 [HNOI2005]狡猾的商人(带权并查集/差分约束系统)
题面 Bzoj 洛谷 题解 考虑带权并查集,设\(f[i]\)表示\(i\)的父亲(\(\forall f[i]<i\)),\(sum[i]\)表示\(\sum\limits_{j=fa[i]} ...
- [BZOJ2330][SCOI2011]糖果 差分约束系统+最短路
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2330 类似于题目中这种含有不等式关系,我们可以建立差分约束系统来跑最长路或最短路. 对于一 ...
- UVA11478 Halum [差分约束系统]
https://vjudge.net/problem/UVA-11478 给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的 ...
随机推荐
- (错误记录)Vue: Unknown custom element
错误: vue.js:634 [Vue warn]: Unknown custom element: <ve-pie> - did you register the component c ...
- 洛谷 P1551 亲戚
洛谷 P1551 亲戚 题目背景 若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系. 题目描 ...
- 10559 - Blocks(方块消除|DP)
该题乍一看和矩阵链乘非常类似,但是有一个不同之处就是该题能够拼接 . 为了达到这个目的.我们不得不拓展维度d[i][j][k].用一个k表示最右边拼接了k个和a[j]同样颜色的方块. 问题的关键在 ...
- [Spark源代码剖析] DAGScheduler划分stage
转载请标明出处:http://blog.csdn.net/bigbigdata/article/details/47293263 本文基于Spark 1.3.1 先上一些stage相关的知识点: DA ...
- 微信支付v2开发(6) 发货通知
本文介绍微信支付中发货通知功能的实现. 一.发货通知 为了更好地跟踪订单的情况,需要第三方在收到最终支付通知之后,调用发货通知API告知微信后台该订单的发货状态. 发货时间限制:虚拟.服务类24小时内 ...
- 当数据库没有备份,redo或undo损坏
数据库在没有备份的情况下,如果数据库redo或undo损坏,可以通过如下方法处理,但是不一定成功 把init文件中的: undo_management=manual 然后启动数据库到mount 状态后 ...
- Javascript和jquery事件--阻止事件冒泡和阻止默认事件
阻止冒泡和阻止默认事件—js和jq相同,jq的event是一个全局的变量 我们写代码的时候常用的都是事件冒泡,但是有的时候我们并不需要触发父元素的事件,而浏览器也有自己的默认行为(表单提交.超链接跳转 ...
- 《从零開始学Swift》学习笔记(Day 63)——Cocoa Touch设计模式及应用之单例模式
原创文章,欢迎转载.转载请注明:关东升的博客 什么是设计模式.设计模式是在特定场景下对特定问题的解决方式.这些解决方式是经过重复论证和測试总结出来的. 实际上.除了软件设计,设计模式也被广泛应用于其它 ...
- spark源码解析之scala基本语法
1. scala初识 spark由scala编写,要解析scala,首先要对scala有基本的了解. 1.1 class vs object A class is a blueprint for ob ...
- POJ 2406 Power Strings KMP求周期
传送门 http://poj.org/problem?id=2406 题目就是求循环了几次. 记得如果每循环输出为1.... #include<cstdio> #include<cs ...