BZOJ 2794 DP
思路:
考虑把询问离线
按照m排序
物品按照a排序
f[i]表示c[j]的和到i b的最大值
背包就好
O(nk)竟然能过……
//By SiriusRen
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=1005;
struct Ask{int m,k,s,id;}ask[N*N];
struct Node{int a,b,c;}node[N];
bool cmp(Ask a,Ask b){return a.m<b.m;}
bool Cmp(Node a,Node b){return a.a<b.a;}
int n,q,a[N],b[N],c[N],jy=1,ans[N*N],f[N*101];
void update(int x){for(int i=N*100-node[x].c;i>=0;i--)f[i+node[x].c]=max(f[i+node[x].c],min(f[i],node[x].b));}
int main(){
scanf("%d",&n),f[0]=0x3f3f3f3f;
for(int i=1;i<=n;i++)scanf("%d%d%d",&node[i].c,&node[i].a,&node[i].b);
scanf("%d",&q);
for(int i=1;i<=q;i++)scanf("%d%d%d",&ask[i].m,&ask[i].k,&ask[i].s),ask[i].id=i;
sort(ask+1,ask+1+q,cmp),sort(node+1,node+1+n,Cmp);
for(int i=1;i<=q;i++){
while(jy<=n&&node[jy].a<=ask[i].m)update(jy),jy++;
ans[ask[i].id]=(f[ask[i].k]>(ask[i].m+ask[i].s)?1:0);
}
for(int i=1;i<=q;i++)puts(ans[i]?"TAK":"NIE");
}
BZOJ 2794 DP的更多相关文章
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- bzoj 2794: Cloakroom dp
题目: 有\(n\)件物品,每件物品有三个属性\(a_i,b_i,c_i,(a_i < b_i)\) 再给出\(q\)个询问,每个询问由非负整数\(m,k,s\)组成,问是否能够选出某些物品使得 ...
- BZOJ - 1003 DP+最短路
这道题被马老板毒瘤了一下,TLE到怀疑人生 //然而BZOJ上妥妥地过了(5500ms+ -> 400ms+) 要么SPFA太玄学要么是初始化block被卡到O(n^4) 不管了,不改了 另外D ...
- BZOJ 2794 [Poi2012]Cloakroom(离线+背包)
2794: [Poi2012]Cloakroom Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 406 Solved: 241[Submit][St ...
- BZOJ 2431 & DP
题意:求逆序对数量为k的长度为n的排列的个数 SOL: 显然我们可以对最后一位数字进行讨论,判断其已经产生多少逆序对数量,然后对于前n-1位同样考虑---->每一个长度的排列我们都可以看做是相同 ...
- bzoj 1791 DP
首先对于一棵树我们可以tree_dp来解决这个问题,那么对于环上每个点为根的树我们可以求出这个树的一端为根的最长链,并且在tree_dp的过程中更新答案.那么我们对于环,从某个点断开,破环为链,然后再 ...
- bzoj 1592 dp
就是dp啊 f[i][j]表示到第i位,最后一位高度是j的最小花费 转移::f[i][j]=minn(f[i-1][k])+abs(a[i]-num[j]);(k<=j) #include< ...
- BZOJ 1207 DP
打一次鼹鼠必然是从曾经的某一次打鼹鼠转移过来的 以打每一个鼹鼠时的最优解为DP方程 #include<iostream> #include<cstdio> #include&l ...
- bzoj 1925 dp
思路:dp[ i ][ 0 ]表示第一个是山谷的方案,dp[ i ][ 1 ]表示第一个是山峰的方案, 我们算dp[ x ][ state ]的时候枚举 x 的位置 x 肯定是山峰, 然后就用组合数算 ...
随机推荐
- Java中final,finally和finalize区别
Day11_SHJavaTraing_4-18-2017 Java中final,finally和finalize区别 1.final—修饰符(关键字) ①final修饰类,表示该类不可被继承 ②fin ...
- 实验0 安装GLUT包及工程的创建与运行
下面将对Windows下在MicroSoft Visual C++2010(简称MSVC)环境下的OpenGL编程进行简单介绍. 1.安装GLUT工具包 GLUT不是OpenGL所必须的,但它会给我们 ...
- react基础篇二
组件 & Props & 生命周期 组件可以将UI切分成一些独立的.可复用的部件,这样你就只需专注于构建每一个单独的部件. 组件从概念上看就像是函数,它可以接收任意的输入值(称之为“p ...
- Linux删除重复内容命令uniq笔记
针对文本文件,有时候我们需要删除其中重复的行.或者统计重复行的总次数,这时候可以采用Linux系统下的uniq命令实现相应的功能. 语法格式:uniq [-ic] 常用参数说明: -i 忽略大小写 - ...
- 在vue中写一个跟着鼠标跑的div,div里面动态显示数据
1.div应该放在body里面,这是我放在body中的一个div里面的div <!-- 信息查看层 --> <div class="floatDiv" :styl ...
- 分享接口管理平台 eoLinker AMS 线上专业版V3.0,只为更好的体验,了解一下?
不知不觉中,eoLinker AMS从2016年上线至今已经三个年头,按照一年一个大版本的迭代计划,我们终于迎来了eoLinker AMS 专业版3.0. AMS产品也从最初专注于API文档管理,成长 ...
- 利用pandas库中的read_html方法快速抓取网页中常见的表格型数据
本文转载自:https://www.makcyun.top/web_scraping_withpython2.html 需要学习的地方: (1)read_html的用法 作用:快速获取在html中页面 ...
- eclipse IED 创建springboot项目教程
学习使我沉淀变成淀粉.-- 沃兹基硕德[美] 首先给你的 eclipse 安装插件 Help> Eclipse Marketplace uploading-image-736738.png 所搜 ...
- COOKIE, SESSION, JSESSION
http://www.360doc.com/content/11/1027/10/7472437_159535413.shtml
- android 权限清单
常用权限: 读写存储卡装载和卸载文件系统 android.permission.WRITE_EXTERNAL_STORAGE android.permission.READ_EXTERNAL_STOR ...