深度学习之TCN网络
论文链接:https://arxiv.org/pdf/1803.01271.pdf
TCN(Temporal Convolutional Networks)
TCN特点:
- 可实现接收任意长度的输入序列作为输入,同时将其映射为等长的输出序列,这方面比较像RNN。
- 计算是layer-wise的,即每个时刻被同时计算,而非时序上串行。
- 其卷积网络层层之间是有因果关系的,意味着不会有“漏接”的历史信息或是未来数据的情况发生,即便 LSTM 它有记忆门,也无法完完全全的记得所有的历史信息,更何况要是该信息无用了就会逐渐被遗忘。
TCN组成:
\[TCN = 1D \ FCN + causal convolutions\]
TCN结构图:

因果卷积(Causal Convolution)

因果卷积可以用上图直观表示。 即对于上一层t时刻的值,只依赖于下一层t时刻及其之前的值。和传统的卷积神经网络的不同之处在于,因果卷积不能看到未来的数据,它是单向的结构,不是双向的。也就是说只有有了前面的因才有后面的果,是一种严格的时间约束模型,因此被成为因果卷积。
膨胀卷积(Dilated Convolution)

如图TCN结构图(a)。单纯的因果卷积还是存在传统卷积神经网络的问题,即对时间的建模长度受限于卷积核大小的,如果要想抓去更长的依赖关系,就需要线性的堆叠很多的层。为了解决这个问题,研究人员提出了膨胀卷积。
膨胀卷积(dilated convolution)是通过跳过部分输入来使filter可以应用于大于filter本身长度的区域。等同于通过增加零来从原始filter中生成更大的filter。
The dilated convolution operation F on element s of the sequence is defined as: \[F(s)=(x*_df)(s)=\overset{k-1}{\underset{i=0}\sum}f(i) \cdot x_{s-d \cdot i}\]
where d is the dilation factor, k is the filter size, and \(s-d\cdot i\) accounts for the direction of the past.
越到上层,卷积窗口越大,而卷积窗口中的“空孔”越多。d是扩展系数(即评价“空孔”的多少)。
残差链接(Residual Connections)

如图TCN结构图(b)。 残差链接被证明是训练深层网络的有效方法,它使得网络可以以跨层的方式传递信息。本文构建了一个残差块来代替一层的卷积。如上图所示,一个残差块包含两层的卷积和非线性映射,在每层中还加入了WeightNorm和Dropout来正则化网络。为什么要1×1卷积呢?1×1卷积是可以用来降维的 。作者直接把较下层的特征图跳层连接到上层,对应的每个Cell的特征图数量(也就是通道数channel)不一致,导致不能直接做类似Resnet的跳层特征图加和操作,于是,为了两个层加和时特征图数量吻合,用1×1卷积做了一个降维的操作。
FCN 全卷积网络

引用:
- https://blog.csdn.net/Kuo_Jun_Lin/article/details/80602776
- https://juejin.im/entry/5b1f90836fb9a01e842b1ae3
- https://www.jianshu.com/p/4280f104ddf7
- https://blog.csdn.net/qq_27586341/article/details/90751794
深度学习之TCN网络的更多相关文章
- 深度学习图像分割——U-net网络
写在前面: 一直没有整理的习惯,导致很多东西会有所遗忘,遗漏.借着这个机会,养成一个习惯. 对现有东西做一个整理.记录,对新事物去探索.分享. 因此博客主要内容为我做过的,所学的整理记录以及新的算法. ...
- 调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数
Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系 ...
- 深度学习|基于LSTM网络的黄金期货价格预测--转载
深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上 ...
- 深度学习之ResNet网络
介绍 Resnet分类网络是当前应用最为广泛的CNN特征提取网络. 我们的一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力.凭着这一基本准则CNN分类网络自Alexnet的7层发展到 ...
- 深度学习之GRU网络
1.GRU概述 GRU是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络.GRU既然是LSTM的变体,因此也是可以解决RNN网络中的长依 ...
- 深度学习-生成对抗网络GAN笔记
生成对抗网络(GAN)由2个重要的部分构成: 生成器G(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器 判别器D(Discriminator):判断这张图像是真实的 ...
- 深度学习之Seq_seq网络
知识点 """ 机器翻译: 历史: 1.逐字翻译 2.基于统计学的机器翻译 3.循环网络和编码 翻译过程: 输入 -- > encoder -->向量 --& ...
- 训练深度学习网络时候,出现Nan是什么原因,怎么才能避免?——我自己是因为data有nan的坏数据,clear下解决
from:https://www.zhihu.com/question/49346370 Harick 梯度爆炸了吧. 我的解决办法一般以下几条:1.数据归一化(减均值,除方差,或者加入n ...
- [译]深度学习(Yann LeCun)
深度学习 严恩·乐库 约书亚•本吉奥 杰弗里·希尔顿 摘要深度学习是计算模型,是由多个处理层学习多层次抽象表示的数据.这些方法极大地提高了语音识别.视觉识别.物体识别.目标检测和许多其他领域如药物 ...
随机推荐
- javascirpt的json.stringify()方法在IE浏览器兼容性模式下出错的原因与解决办法
今天开机混底薪的时候遇到一个JSON.stringify()在IE浏览器兼容模式下的问题. 问题描述 一个弹窗选择的功能原来好好的,突然就不行了. 想要调试调试不了,报错信息也看不到(一开F12这破I ...
- Java Base64Utils ----Utils
Java Base64Utils 目录 Java Base64Utils 7 /** * <html> * <body> * <P> Copyrig ...
- 在ASP.NET Core中添加的Cookie如果含有特殊字符,会被自动转义
我们知道在Cookie中有些字符是特殊字符,这些字符是不能出现在Cookie的键值中的. 比如"="是Cookie中用来分隔键和值的特殊字符,例如:Key01=Value01,表示 ...
- dataGridView1_RowEnter事件与dataGridView1.CurrentRow一起使用错误问题
在使用DataGridView想在选项行发生改变时获得当前行的,于是使用了RowEnter 但是获得数据却不对,总是获得前一个被选中的行,比如第一次选中谭经理,再选中王海霞,数据得到却是谭经理的 从事 ...
- C# HttpWebRequest和WebClient的区别 通过WebClient/HttpWebRequest实现http的post/get方法
一 HttpWebReques1,HttpWebRequest是个抽象类,所以无法new的,需要调用HttpWebRequest.Create();2,其Method指定了请求类型,这里用的GET,还 ...
- Flask路由系统
Flask路由系统 我们之前了解了路由系统是由带参数的装饰器完成的. 路由本质:装饰器和闭包实现的. 设置路由的两种方式 第一种: @app.route('/index') def index(): ...
- 基础html页面结构
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- div等高布局
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 关于html的相关讲解
浏览器chrome Chrome它内部有一个解析器,这个解析器就是解析我们的代码,各个浏览器的内核不一样,所以存在浏览器的兼容.这个内核是一个引擎. 谷歌的内核是webkit 引擎是v8. 客户端的请 ...
- rpm安装包制作
RPM是RPM Package Manager(RPM软件包管理器) 1. 安装制作工具 # yum install rpm-build 2. 目录结构 /root/rpmbuild/SOURCES ...