MAST 397B: Introduction to Statistical Computing
ABSTRACT
Notes: (i) This project can be done in groups. If it is done
in a group, you have to submit the copy for the group
(not individuals). In this case the cover page must have all
the group members with their ID numbers along with a
statement of contributions of each member of the group.
(ii) You should present references to all materials (online
or otherwise) in your report. (ii) All the codes should be
put in an appendix. (iii) Answers should be clearly stated;
a not-well written report will get only partial credit.
Instructor: Yogen Chaubey
MAST 397B
FINAL PROJECT
Due Date: December 2, 2019
MAST 397B: Introduction to Statistical Computing
Final Project
Due Date: December 2, 2019 [Hard Copies only]
Problem 1. [20 Points]
Fitting distributions to a given dataset is an important problem in statistical analysis. R
contains a package called fitdistrplus that facilitates fitting various known continuous
distributions. In general fitting a distribution requires the knowledge of the form of the
distribution such as the Gaussian distribution given by the probability density function (pdf)
????(????) = 1 ????√(2????) ????????????{? 12????2 (???? ? ????)2}; ???? ∈ (?∞, ∞).
The vector ???? = (????, ????2) is known as the parameter vector and is estimated from a random
sample (????1, ????2, … , ????????). Consider the data named goundbeef, available with the package
fitdistrplus. Fit the following two distributions for this dataset (a) log-normal distribution
(b) Gamma distribution.
(i) Use the maximum likelihood (ML) method for the log-normal distribution and
method of moments (MM) for the Gamma distribution. Note that ???? is said to have
log-normal distribution if ???? = log ???? has a normal distribution and that the Gamma
pdf with shape parameter ???? and scale parameter ???? is given by
????(????) = 1 ????????Γ(????) ?????????1 exp{ ? ???????? }; ???? ≥ 0
Use a standard statistical text for explicit formulae in order to calculate these estimators
using your own defined function in R.
(ii) Use the package fitdistrplus to find the ML and MM estimators for the two
distributions.
(iii) One method of justifying a given distribution is to perform a Chi-square goodness-of?fit test. It is given by the test statistic
????2 = ?????????? ? ?????????2 ????????2 ????????=1
Here we assume that the data is grouped into k groups (???? = # ???????? ???????????????? ???????? ????????? ?????????????????????????????????) ,
???????? is the observed frequency in ????????? group and ???????? is the frequency in ????????? group under the fitted
model.
This has to be computed by the formula, ???????? = ????????????, ???????? is the probability of the observation
代做MAST 397B作业、代写R语言留学生作业
being in group ???? in the model. If the model fits, the test statistic ????2 has a Chi-square
distribution with df= ????=k-1-p where p= No. of estimated parameters.
Compute the ????2 statistic for the above data for a suitable value of ????; note that for the test to
be valid each group must have 5 or more observations. Find the upper 5% value of the
appropriate ????2 distribution and compare the computed value (for both the models) in
deciding if the models fit the data. [Note: The observed value of ????2 greater than 5% value of
χ2 with df= ???? indicates poor fit].
(iv) Quality of the fits may also be gauged by plotting the histogram with estimated
density super-imposed over it. Provide the histogram with the estimated density
super-imposed over it for both the methods for each of the log-normal and gamma
distributions and comment on the quality of the fit.
(v) Another qualitative method to judge the fit is the Q-Q plot of the data. Give the QQ
plots for both the methods for each of the log-normal and Gamma densities. Comment
on the quality of fit in each case. How does it compare with your conclusion in part
(iii).
Problem 2. [15 Points]
Problem 3 [10 Points]
Consider the following data from Example 7.12
(a)The objective is to determine a line ???? = ????0 + ????1???? such that the function
????(????0, ????1) = ? |???????? ? ????0 ? ????1????????| ????????=1
is minimized. Use optim( ) function of R with starting values obtained from lm( ).
(b) Plot the least square line and the line obtained in part (a) on the scatterplot and
comment on the fit of these lines to the data.
(c) Suppose another point (2.05,3.23) is added to the data. Compute the two lines again
and comment on the effect of the new point on the estimates.

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codehelp

MAST 397B: Introduction to Statistical Computing的更多相关文章

  1. Brief introduction to Scala and Breeze for statistical computing

    Brief introduction to Scala and Breeze for statistical computing 时间 2013-12-31 03:17:19  Darren Wilk ...

  2. Introduction to Parallel Computing

    Copied From:https://computing.llnl.gov/tutorials/parallel_comp/ Author: Blaise Barney, Lawrence Live ...

  3. The R Project for Statistical Computing

    [Home] Download CRAN R Project About R Contributors What’s New? Mailing Lists Bug Tracking Conferenc ...

  4. Introduction to statistical learning:with Applications in R (书,数据,R代码,链接)

    http://faculty.marshall.usc.edu/gareth-james/ http://faculty.marshall.usc.edu/gareth-james/ISL/

  5. How-to: Do Statistical Analysis with Impala and R

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  6. Evolutionary Computing: 5. Evolutionary Strategies(2)

    Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...

  7. Evolutionary Computing: 4. Review

    Resource:<Introduction to Evolutionary Computing> 1. What is an evolutionary algorithm? There ...

  8. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  9. A Statistical View of Deep Learning (V): Generalisation and Regularisation

    A Statistical View of Deep Learning (V): Generalisation and Regularisation We now routinely build co ...

随机推荐

  1. vue引用bootstrap3

    引用bootstrap   yarn add bootstrap@3 基于jquery,因此还需要引用2个包,jquery和popper.js, yarn add jquery popper.js - ...

  2. Winform中设置ZedGraph鼠标焦点位置画出十字线并在鼠标移出时十字线消失

    场景 Winforn中设置ZedGraph曲线图的属性.坐标轴属性.刻度属性: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10 ...

  3. jdk8 HashMap tableSizeFor

    今天读jdk8  HashMap源码,构造函数中 根据initialCapacity初始化threshold public HashMap(int initialCapacity, float loa ...

  4. Java开发设计——UML类图

    Java开发设计——UML类图 摘要:本文主要介绍了UML类图的相关知识. 简介 在UML中,类使用包含类名.属性和操作且带有分隔线的长方形来表示,类图分为三层. 第一层是类的名称,如果是抽象类或接口 ...

  5. shiro加密算法

    第一节的时候我介绍过,shiro有很多加密算法,如md5和sha,而且还支持加盐,使得密码的解析变得更有难度,更好的保障了数据的安全性. 这里我们要介绍的是md5算法,因为比较常用.首先我们来看看md ...

  6. 深入理解--VUE组件中数据的存放以及为什么组件中的data必需是函数

    1.组件中数据的存放 ***(重点)组件是一个单独模块的封装:这个模块有自己的HTML模板,也有data属性. 只是这个data属性必需是一个函数,而这个函数返回一个对象,这个对象里面存放着组件的数据 ...

  7. linux 线程基础

    线程基础函数 查看进程中有多少个线程,查看线程的LWP ps -Lf 进程ID(pid) 执行结果:LWP列 y:~$ ps -Lf 1887 UID PID PPID LWP C NLWP STIM ...

  8. odoo10学习笔记十三:qweb报表

    转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/11189336.html 一:概述 报表是使用qweb定义的,报表的pdf导出是使用wkhtmltopdf来完 ...

  9. 第14节_BLE协议ATT层

    下面这个图是BLE协议各层跟医院的各个科室的类比图: 跟医院类比,ATT层就是化验室,通过它可以得到各种检查结果──属性.这些检查结果之间有什么联系,它们组合起来体现了什么,化验室是不知道的,这些得由 ...

  10. 201871010135-张玉晶《面向对象程序设计(java)》第十周学习总结

    201871010135-张玉晶<面向对象程序设计(java)>第十周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...