MAST 397B: Introduction to Statistical Computing
ABSTRACT
Notes: (i) This project can be done in groups. If it is done
in a group, you have to submit the copy for the group
(not individuals). In this case the cover page must have all
the group members with their ID numbers along with a
statement of contributions of each member of the group.
(ii) You should present references to all materials (online
or otherwise) in your report. (ii) All the codes should be
put in an appendix. (iii) Answers should be clearly stated;
a not-well written report will get only partial credit.
Instructor: Yogen Chaubey
MAST 397B
FINAL PROJECT
Due Date: December 2, 2019
MAST 397B: Introduction to Statistical Computing
Final Project
Due Date: December 2, 2019 [Hard Copies only]
Problem 1. [20 Points]
Fitting distributions to a given dataset is an important problem in statistical analysis. R
contains a package called fitdistrplus that facilitates fitting various known continuous
distributions. In general fitting a distribution requires the knowledge of the form of the
distribution such as the Gaussian distribution given by the probability density function (pdf)
????(????) = 1 ????√(2????) ????????????{? 12????2 (???? ? ????)2}; ???? ∈ (?∞, ∞).
The vector ???? = (????, ????2) is known as the parameter vector and is estimated from a random
sample (????1, ????2, … , ????????). Consider the data named goundbeef, available with the package
fitdistrplus. Fit the following two distributions for this dataset (a) log-normal distribution
(b) Gamma distribution.
(i) Use the maximum likelihood (ML) method for the log-normal distribution and
method of moments (MM) for the Gamma distribution. Note that ???? is said to have
log-normal distribution if ???? = log ???? has a normal distribution and that the Gamma
pdf with shape parameter ???? and scale parameter ???? is given by
????(????) = 1 ????????Γ(????) ?????????1 exp{ ? ???????? }; ???? ≥ 0
Use a standard statistical text for explicit formulae in order to calculate these estimators
using your own defined function in R.
(ii) Use the package fitdistrplus to find the ML and MM estimators for the two
distributions.
(iii) One method of justifying a given distribution is to perform a Chi-square goodness-of?fit test. It is given by the test statistic
????2 = ?????????? ? ?????????2 ????????2 ????????=1
Here we assume that the data is grouped into k groups (???? = # ???????? ???????????????? ???????? ????????? ?????????????????????????????????) ,
???????? is the observed frequency in ????????? group and ???????? is the frequency in ????????? group under the fitted
model.
This has to be computed by the formula, ???????? = ????????????, ???????? is the probability of the observation
代做MAST 397B作业、代写R语言留学生作业
being in group ???? in the model. If the model fits, the test statistic ????2 has a Chi-square
distribution with df= ????=k-1-p where p= No. of estimated parameters.
Compute the ????2 statistic for the above data for a suitable value of ????; note that for the test to
be valid each group must have 5 or more observations. Find the upper 5% value of the
appropriate ????2 distribution and compare the computed value (for both the models) in
deciding if the models fit the data. [Note: The observed value of ????2 greater than 5% value of
χ2 with df= ???? indicates poor fit].
(iv) Quality of the fits may also be gauged by plotting the histogram with estimated
density super-imposed over it. Provide the histogram with the estimated density
super-imposed over it for both the methods for each of the log-normal and gamma
distributions and comment on the quality of the fit.
(v) Another qualitative method to judge the fit is the Q-Q plot of the data. Give the QQ
plots for both the methods for each of the log-normal and Gamma densities. Comment
on the quality of fit in each case. How does it compare with your conclusion in part
(iii).
Problem 2. [15 Points]
Problem 3 [10 Points]
Consider the following data from Example 7.12
(a)The objective is to determine a line ???? = ????0 + ????1???? such that the function
????(????0, ????1) = ? |???????? ? ????0 ? ????1????????| ????????=1
is minimized. Use optim( ) function of R with starting values obtained from lm( ).
(b) Plot the least square line and the line obtained in part (a) on the scatterplot and
comment on the fit of these lines to the data.
(c) Suppose another point (2.05,3.23) is added to the data. Compute the two lines again
and comment on the effect of the new point on the estimates.

因为专业,所以值得信赖。如有需要,请加QQ:99515681 或邮箱:99515681@qq.com

微信:codehelp

MAST 397B: Introduction to Statistical Computing的更多相关文章

  1. Brief introduction to Scala and Breeze for statistical computing

    Brief introduction to Scala and Breeze for statistical computing 时间 2013-12-31 03:17:19  Darren Wilk ...

  2. Introduction to Parallel Computing

    Copied From:https://computing.llnl.gov/tutorials/parallel_comp/ Author: Blaise Barney, Lawrence Live ...

  3. The R Project for Statistical Computing

    [Home] Download CRAN R Project About R Contributors What’s New? Mailing Lists Bug Tracking Conferenc ...

  4. Introduction to statistical learning:with Applications in R (书,数据,R代码,链接)

    http://faculty.marshall.usc.edu/gareth-james/ http://faculty.marshall.usc.edu/gareth-james/ISL/

  5. How-to: Do Statistical Analysis with Impala and R

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  6. Evolutionary Computing: 5. Evolutionary Strategies(2)

    Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...

  7. Evolutionary Computing: 4. Review

    Resource:<Introduction to Evolutionary Computing> 1. What is an evolutionary algorithm? There ...

  8. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  9. A Statistical View of Deep Learning (V): Generalisation and Regularisation

    A Statistical View of Deep Learning (V): Generalisation and Regularisation We now routinely build co ...

随机推荐

  1. Git以及GitHub的一些基本使用

    1:注册GitHub账号: https://github.com/ 2:Git bash工具下载地址 https://gitforwindows.org/ 3:怎么在GitHub 新增 SSH Key ...

  2. PIE SDK水深提取算法

    1.算法功能简介 水深提取算法就是根据输入的水位设为d,dem设为h 这两个数据做一个差值运算,则水深计算公式为d-h;本示例中的是基于洞庭湖提取的水体矢量文件的范围来计算dem和水位25米的差值. ...

  3. 小鸟初学Shell编程(五)输入输出重定向

    重定向作用 一个进程默认会打开标准输入.标准输出.错误输出三个文件描述符. 重定向可以让我们的程序的标准输出.错误输出的信息重定向文件里,那么这里还可以将文件的内容代替键盘作为一种标准输入的方式. 重 ...

  4. WebService 创建、发布、调用

    环境Win7+VS2017 启用IIS 查看iis是否启用 新建 ASP.NET Web 应用程序 项目,项目中添加Web 服务 在 asmx  文件中添加需要的方法 运行结果 发布 创建新的文件夹, ...

  5. i春秋CTF-“百度杯”CTF比赛 九月场 XSS平台

    “百度杯“CTF比赛 九月场 ###XSS平台   看了别人的wp才知道这里需要变数组引起报错然后百度信息收集,这一步在实战中我觉得是很有作用的,get到.       这里取百度rtiny,看别人w ...

  6. swift(三)字典数组操作

    //1.数组的概念和定义 var array = [,,,] var array1:Array = [,,,] var array2:Array<Int> = [,,,]; var arr ...

  7. Android 自定义水平进度条的圆角进度

    有时项目中需要实现水平圆角进度,如下两种,其实很简单     下面开始看代码,先从主界面布局开始看起: <?xml version="1.0" encoding=" ...

  8. Mybatis使用Mybatis-generator插件及配置(数据库逆向工程)

    Mybatis使用Mybatis-generator插件 首先在POM.xml文件添加架包,我这里用的是SpringBoot,所以用的也是SpringBoot架包,最少要mybatis,generat ...

  9. Phoenix 无法启动报错: java.net.BindException: Address already in use

    一.问题描述 i. 登录Ambari发现有一个节点的 Phoenix 无法启动 ii. 在Ambari上点击“Start”,监控 Phoenix 日志文件 iii. Phoenix 日志如下: [ro ...

  10. Linux设备管理(四)_从sysfs回到ktype【转】

    转自:https://www.cnblogs.com/xiaojiang1025/archive/2016/12/21/6202298.html sysfs是一个基于ramfs的文件系统,在2.6内核 ...