hdu2281&&POJ1320——Pell方程
hdu2281
输入一个 $N$,求最大的 $n$($n \leq N$)和 $x$,使得 $x^2 = \frac{1^2+2^2+...+n^2}{n}$.
分析:
将右边式子的分子求和化简,有:$x^2 = \frac{(n+1)(2n+1)}{6}$.
变换成:$(4n+3)^2-48x^2 = 1$.
这就是佩尔方程的形式,且样例给出了最小整数解(7, 1)。
求出long long范围内的所有解(也就9个)
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
ll n;
vector<ll>nn, xx; void init()
{
ll pre_x = , pre_y = ;
nn.push_back(), xx.push_back();
for(int i;;i++)
{
ll tmpx = pre_x* + pre_y**;
ll tmpy = pre_x* + pre_y*;
if(tmpx < ) break;
if((tmpx-)% == )
{
nn.push_back((tmpx-)/);
xx.push_back(tmpy);
}
pre_x = tmpx; pre_y = tmpy;
}
nn.push_back((ll)1e18+); //设置一个边界
} int main()
{
init();
//printf("%d\n", nn.size());
while(scanf("%lld", &n) == && n)
{
for(int i = ;i < nn.size();i++)
{
if(n < nn[i])
{
printf("%lld %lld\n", nn[i-], xx[i-]);
break;
}
}
}
}
POJ 1320
题意:有 m 个编号从 1 到 m 的房子,问是否存在 1+2+3+...+ (N-1)=(N+1)+(N+2)+...+(M),求出前 10 个 n、m
分析:
将左右两端的等差数列求和,有:$(2m+1)^2-8n^2=1$
易知佩尔方程 $x^2-8y^2=1$ 的最小解为 (3, 1),按递推式可求出其他的解。
#include<cstdio>
using namespace std; int main()
{
int x = , y = ;
for(int i = ;i < ;i++)
{
int tmpx = x* + y**;
int tmpy = x* + y*;
printf("%10d%10d\n", tmpy, (tmpx-)/); //易知tmpx一定是奇数,所以不必判断
x = tmpx, y = tmpy;
}
return ;
}
参考链接:
1. https://blog.csdn.net/u011815404/article/details/88723480
2. https://blog.csdn.net/u011815404/article/details/88723187
hdu2281&&POJ1320——Pell方程的更多相关文章
- Pell方程及其一般形式
一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...
- hdu3293(pell方程+快速幂)
裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others) Memory Limit: ...
- HDU 2281 Square Number Pell方程
http://acm.hdu.edu.cn/showproblem.php?pid=2281 又是一道Pell方程 化简构造以后的Pell方程为 求出其前15个解,但这些解不一定满足等式,判断后只有5 ...
- POJ 1320 Street Numbers Pell方程
http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b 要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...
- POJ 2427 Smith's Problem Pell方程
题目链接 : http://poj.org/problem?id=2427 PELL方程几个学习的网址: http://mathworld.wolfram.com/PellEquation.html ...
- HDU 6222 Heron and His Triangle (pell 方程)
题面(本人翻译) A triangle is a Heron's triangle if it satisfies that the side lengths of it are consecutiv ...
- SPOJ 1739 Yet Another Equation(Pell方程)
题目链接:http://www.spoj.com/problems/EQU2/ 题意:给出方程x^2-n*y^2=1的最小整数解. 思路:参见金斌大牛的论文<欧几里得算法的应用>. imp ...
- Pell方程(求形如x*x-d*y*y=1的通解。)
佩尔方程x*x-d*y*y=1,当d不为完全平方数时,有无数个解,并且知道一个解可以推其他解. 如果d为完全平方数时,可知佩尔方程无解. 假设(x0,y0)是最小正整数解. 则: xn=xn-1*x0 ...
- [NBUT 1224 Happiness Hotel 佩尔方程最小正整数解]连分数法解Pell方程
题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8 ...
随机推荐
- 物联网典型场景之智能家电,使用JOSH技术带来的优势和机会~
很多人一直问,用JOSH技术如何改变智能家电,有没有真正的必要? 一部分人的观点:我可以用嵌入式C.汇编完成家电的程序,毕竟这些设备的程序很简单: 另一部分的人:智能家电互相的连接都一直有人在做啊,并 ...
- windows环境中hbase源码编译遇到的问题
转载请注明出处 问题一 [ERROR] Failed to execute goal org.codehaus.mojo:findbugs-maven-plugin:3.0.0:findbugs (d ...
- C# Thread was being aborted
先重现问题 1.新建一个aspx页面项目,插入两个页面WebForm1.aspx,WebForm2.aspx, WebForm1代码修改如下 protected void Page_Load(obje ...
- zipkin微服务调用链分析(python)
一,概述 zipkin的作用 在微服务架构下,一个http请求从发出到响应,中间可能经过了N多服务的调用,或者N多逻辑操作,如何监控某个服务,或者某个逻辑操作的执行情况,对分析耗时操作,性能瓶颈具有很 ...
- Webpack 4 : ERROR in Entry module not found: Error: Can't resolve './src'
ERROR in Entry module not found: Error: Can't resolve './src' in 'E:\ASUS\Documents\VSCode files\Web ...
- 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)
[BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...
- mysql 实现row_number功能
需求: 解答:由于mysql 中没有类似oracle中的 row_number功能,要实现row_number 可以使用如下功能: Select pkid,(@row_number:=@row_num ...
- C#多线程下如何保证线程安全?
多线程编程相对于单线程会出现一个特有的问题,就是线程安全的问题.所谓的线程安全,就是如果你的代码所在的进程中有多个线程在同时运行,而这些线程可能会同时运行这段代码.如果每次运行结果和单线程运行的结果是 ...
- dotnet学习系列
这里整理下之前关于dotnet方面的文章索引. 一.dotnet core 系列 dotnet core 微服务教程 asp.net core 系列之并发冲突 asp.net core 系列之中间件进 ...
- ADO.NET中使用事务
using (SqlConnection conn = new SqlConnection(k2ConnStr)) { SqlCommand cmd = new SqlCommand(sql, con ...