模板 - 图论 - 强连通分量 - Kosaraju算法
这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点。
算法复杂度:
Kosaraju算法:初始化,加边,两次dfs,复杂度O(n+m)
强连通分量缩点算法:遍历每个点每条边,复杂度O(n+m)
对边排序去重:复杂度O(n+mlogm)
注意:
1、最好先 Init() ,然后再 AddEdge()
2、维护缩点时点的性质对新点的影响在 dfs2() 中进行
3、维护缩点时边的性质对新点的影响在 Build() 中进行,特别注意缩点之后的自环
4、并不是每道题都需要原图反图,也并不是都需要对边进行去重
Kosaraju算法缩点的结果本身就是按拓扑序排列的。
namespace SCC {
int n;
vector<int> G[MAXN + 5], BG[MAXN + 5];
int c1[MAXN + 5], cntc1;
int c2[MAXN + 5], cntc2;
int s[MAXN + 5], cnts;
int n2;
vector<int> V2[MAXN + 5];
vector<int> G2[MAXN + 5], BG2[MAXN + 5];
void Init(int _n) {
n = _n;
cntc1 = 0, cntc2 = 0, cnts = 0;
for(int i = 1; i <= n; ++i) {
G[i].clear();
BG[i].clear();
c1[i] = 0;
c2[i] = 0;
s[i] = 0;
V2[i].clear();
G2[i].clear();
BG2[i].clear();
}
return;
}
void AddEdge(int u, int v) {
G[u].push_back(v);
BG[v].push_back(u);
return;
}
void dfs1(int u) {
c1[u] = cntc1;
for(auto &v : G[u]) {
if(!c1[v])
dfs1(v);
}
s[++cnts] = u;
}
void dfs2(int u) {
V2[cntc2].push_back(u);
c2[u] = cntc2;
for(auto &v : BG[u]) {
if(!c2[v])
dfs2(v);
}
return;
}
void Kosaraju() {
for(int i = 1; i <= n; ++i) {
if(!c1[i]) {
++cntc1;
dfs1(i);
}
}
for(int i = n; i >= 1; --i) {
if(!c2[s[i]]) {
++cntc2;
dfs2(s[i]);
}
}
return;
}
void Build() {
n2 = cntc2;
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
for(auto &v : G[u]) {
if(c2[v] != i) {
G2[i].push_back(c2[v]);
BG2[c2[v]].push_back(i);
}
}
}
}
for(int i = 1; i <= n2; ++i) {
sort(G2[i].begin(), G2[i].end());
G2[i].erase(unique(G2[i].begin(), G2[i].end()), G2[i].end());
sort(BG2[i].begin(), BG2[i].end());
BG2[i].erase(unique(BG2[i].begin(), BG2[i].end()), BG2[i].end());
}
return;
}
void Solve() {
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
//把原图的信息传递给新图;
}
}
//在新图上Solve;
return;
}
}
好像在不开O2的情况下这个vector版的比链式前向星版的费多了很多时间。
使用方法:
- Init,传入原图的点数。
- 使用AddEdge逐个加入有向边。
- 调用Kosaraju划分强连通分量(V2存储强连通缩点后的新点包含原图的哪些点,c2存储原图的点对应强连通缩点后的哪个新点)。
- 调用Build在强连通缩点之后的新点之间建立新边到G2,并排序去重。
- 在Solve中书写在DAG中求解的代码,例如先把原图的点的信息传递给强连通缩点后的新点,然后在DAG上dp(注意是使用G2)。
模板 - 图论 - 强连通分量 - Kosaraju算法的更多相关文章
- 有向图的强连通分量——kosaraju算法
一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量
- 图论-强连通分量-Tarjan算法
有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...
- 图的强连通分量-Kosaraju算法
输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...
- NOIP专题复习3 图论-强连通分量
目录 一.知识概述 二.典型例题 1.[HAOI2006]受欢迎的牛 2.校园网络[[USACO]Network of Schools加强版] 三.算法分析 (一)Tarjan算法 (二)解决问题 四 ...
- 有向图强连通分量Tarjan算法
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...
- 【模板】强连通分量和tarjan算法
看了好久才终于明白了这个算法..复杂度是O(n+m). 我觉得这个算法不是很好理解,但是看懂了以后还是觉得听巧妙的. 下面给出模板代码和三组简单数据帮助理解. 代码如下: #include <s ...
- 模板 - 强连通分量 - Kosaraju
Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...
- 算法模板——Tarjan强连通分量
功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量 原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点 这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有 ...
- 强连通分量-----Kosaraju
芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connect ...
随机推荐
- C# Java的加密的各种折腾
24位加密 Java public class DESUtil { private static final String KEY_ALGORITHM = "DESede"; pr ...
- python多进程并发插入mysql数据
import pymysql import traceback from multiprocessing import Pool,Manager,cpu_count from multiprocess ...
- HTTP2协议主要改进点
1.改成二进制协议,每次传输二进制帧,帧有以下几个字段 类型type,长度length,flag,StringID流标志,Payload负载,最基础的两种类型HEAD类型和DATA类型 2.多路复用, ...
- Maven版本管理
一.Maven项目打包的两种方式 二.如何优雅地修改多模块maven项目中的版本号 三.一个项目使用另一个项目 一.Maven项目打包的两种方式: 1.依赖工具比如eclipse 2.使用命令行: ...
- python3实现unix域协议(tcp、udp)通讯
socket API原本是为网络通讯设计的,但后来在socket的框架上发展出一种IPC机制,就是UNIXDomain Socket.虽然网络socket也可用于同一台主机的进程间通讯(通过loopb ...
- 二十三、mysql索引管理详解
一.索引分类 分为聚集索引和非聚集索引. 聚集索引 每个表有且一定会有一个聚集索引,整个表的数据存储在聚集索引中,mysql索引是采用B+树结构保存在文件中,叶子节点存储主键的值以及对应记录的数据,非 ...
- MySQL Hardware--RAID卡常用信息查看
MegaRAID信息查看 #查raid卡信息(生产商.电池信息及所支持的raid级别) /usr/local/sbin/MegaCli -AdpAllInfo -aALL |grep -E " ...
- RabbitMQ java 原生代码
rabbitMQ 的交换器有四种类型:direct.fanout.topic.headers 以下是具体的代码: direct:路由键只能全部匹配,才能进入到指定队列中.其他使用 direct生产者 ...
- 【DRF框架】REST风格
REST风格 表述性状态转移——web交互方案 目的 解决前后端交互的问题,开发效率高,简介,性能好 定义 资源:网上的所有信息或者很抽象的概念,在web中只要又被引用的必要都是资源 URI:统一资源 ...
- [ipsec][crypto] 有点不同的数字证书到底是什么
前言 前言是在写完了全文之后回头补的.本意是想完全抽象的把证书的抽象逻辑意义表达出来,因为你能找到的大部分 资料都深陷在技术细节与行业规范里.只有其型没有其理,没有什么比理解一个事物的内在合理性更有乐 ...