这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点。

算法复杂度:

Kosaraju算法:初始化,加边,两次dfs,复杂度O(n+m)

强连通分量缩点算法:遍历每个点每条边,复杂度O(n+m)

对边排序去重:复杂度O(n+mlogm)

注意:

1、最好先 Init() ,然后再 AddEdge()

2、维护缩点时点的性质对新点的影响在 dfs2() 中进行

3、维护缩点时边的性质对新点的影响在 Build() 中进行,特别注意缩点之后的自环

4、并不是每道题都需要原图反图,也并不是都需要对边进行去重

Kosaraju算法缩点的结果本身就是按拓扑序排列的。

namespace SCC {
int n;
vector<int> G[MAXN + 5], BG[MAXN + 5]; int c1[MAXN + 5], cntc1;
int c2[MAXN + 5], cntc2;
int s[MAXN + 5], cnts; int n2;
vector<int> V2[MAXN + 5];
vector<int> G2[MAXN + 5], BG2[MAXN + 5]; void Init(int _n) {
n = _n;
cntc1 = 0, cntc2 = 0, cnts = 0;
for(int i = 1; i <= n; ++i) {
G[i].clear();
BG[i].clear();
c1[i] = 0;
c2[i] = 0;
s[i] = 0;
V2[i].clear();
G2[i].clear();
BG2[i].clear();
}
return;
} void AddEdge(int u, int v) {
G[u].push_back(v);
BG[v].push_back(u);
return;
} void dfs1(int u) {
c1[u] = cntc1;
for(auto &v : G[u]) {
if(!c1[v])
dfs1(v);
}
s[++cnts] = u;
} void dfs2(int u) {
V2[cntc2].push_back(u);
c2[u] = cntc2;
for(auto &v : BG[u]) {
if(!c2[v])
dfs2(v);
}
return;
} void Kosaraju() {
for(int i = 1; i <= n; ++i) {
if(!c1[i]) {
++cntc1;
dfs1(i);
}
}
for(int i = n; i >= 1; --i) {
if(!c2[s[i]]) {
++cntc2;
dfs2(s[i]);
}
}
return;
} void Build() {
n2 = cntc2;
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
for(auto &v : G[u]) {
if(c2[v] != i) {
G2[i].push_back(c2[v]);
BG2[c2[v]].push_back(i);
}
}
}
}
for(int i = 1; i <= n2; ++i) {
sort(G2[i].begin(), G2[i].end());
G2[i].erase(unique(G2[i].begin(), G2[i].end()), G2[i].end());
sort(BG2[i].begin(), BG2[i].end());
BG2[i].erase(unique(BG2[i].begin(), BG2[i].end()), BG2[i].end());
}
return;
} void Solve() {
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
//把原图的信息传递给新图;
}
}
//在新图上Solve;
return;
}
}

好像在不开O2的情况下这个vector版的比链式前向星版的费多了很多时间。

使用方法:

  1. Init,传入原图的点数。
  2. 使用AddEdge逐个加入有向边
  3. 调用Kosaraju划分强连通分量(V2存储强连通缩点后的新点包含原图的哪些点,c2存储原图的点对应强连通缩点后的哪个新点)。
  4. 调用Build在强连通缩点之后的新点之间建立新边到G2,并排序去重。
  5. 在Solve中书写在DAG中求解的代码,例如先把原图的点的信息传递给强连通缩点后的新点,然后在DAG上dp(注意是使用G2)。

模板 - 图论 - 强连通分量 - Kosaraju算法的更多相关文章

  1. 有向图的强连通分量——kosaraju算法

    一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量

  2. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  3. 图的强连通分量-Kosaraju算法

    输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...

  4. NOIP专题复习3 图论-强连通分量

    目录 一.知识概述 二.典型例题 1.[HAOI2006]受欢迎的牛 2.校园网络[[USACO]Network of Schools加强版] 三.算法分析 (一)Tarjan算法 (二)解决问题 四 ...

  5. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  6. 【模板】强连通分量和tarjan算法

    看了好久才终于明白了这个算法..复杂度是O(n+m). 我觉得这个算法不是很好理解,但是看懂了以后还是觉得听巧妙的. 下面给出模板代码和三组简单数据帮助理解. 代码如下: #include <s ...

  7. 模板 - 强连通分量 - Kosaraju

    Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...

  8. 算法模板——Tarjan强连通分量

    功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量 原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点 这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有 ...

  9. 强连通分量-----Kosaraju

    芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connect ...

随机推荐

  1. 使用的一些支持swift3.0的开源库

    #解决键盘弹起遮挡工具 pod 'IQKeyboardManagerSwift', '~>4.0.6' #多种类型弹出框 pod 'SCLAlertView', :git => 'http ...

  2. js合并多个array

    Array.prototype.concat.call(array1, array2, array3, ...)

  3. webpack-dev-server的使用

    1.安装 npm install webpack-dev-server --save-dev ps:为保证webpack-dev-server能正常运行,请确认在本地项目中下载了webpack的包,可 ...

  4. 十七、存储过程&自定义函数详解

    代码中被[]包含的表示可选,|符号分开的表示可选其一. 需求背景介绍 线上程序有时候出现问题导致数据错误的时候,如果比较紧急,我们可以写一个存储来快速修复这块的数据,然后再去修复程序,这种方式我们用到 ...

  5. c# ArrayList 类

  6. mqtt服务搭建(emqx,原emq)

    系统环境: ubuntu 18.04server lts 目标系统IP地址(可访问):192.168.1.31 emqx版本: v3.2.3 打开网页,根据目标系统和emqx版本选择好安装包.这里我选 ...

  7. USB Accessory 模式

    USB Accessory 模式USB附件模式允许用户连接专为Android设备设计的USB主机硬件.配件必须遵守Android配件开发套件文档中概述的Android附件协议.这使得无法充当USB主机 ...

  8. ssh无密码连接

    1. 生成密钥对文件 [root@centos2 ~]# -t 指定加密类型 -b 指定密钥对加密长度 询问1:执行过程中会询问保存位置,一般默认保存在当前用户家目录下的.ssh/目录下 询问2:是否 ...

  9. javascript详解1

    推荐学习链接: https://book.apeland.cn/details/356/ http://es6.ruanyifeng.com/#README https://developer.moz ...

  10. java操作redis(jedis)常用方法示例

    说明:redis命令和jedis方法名基本是一一对应的 Redis常用命令1 连接操作命令 ● quit:关闭连接(connection) ● auth:简单密码认证 ● help cmd: 查看cm ...