这个算法是自己实现的Kosaraju算法,附带一个缩点,其实缩点这个跟Kosaraju算法没有什么关系,应该其他的强连通分量算法计算出每个点所属的强连通分量之后也可以这样缩点。

算法复杂度:

Kosaraju算法:初始化,加边,两次dfs,复杂度O(n+m)

强连通分量缩点算法:遍历每个点每条边,复杂度O(n+m)

对边排序去重:复杂度O(n+mlogm)

注意:

1、最好先 Init() ,然后再 AddEdge()

2、维护缩点时点的性质对新点的影响在 dfs2() 中进行

3、维护缩点时边的性质对新点的影响在 Build() 中进行,特别注意缩点之后的自环

4、并不是每道题都需要原图反图,也并不是都需要对边进行去重

Kosaraju算法缩点的结果本身就是按拓扑序排列的。

namespace SCC {
int n;
vector<int> G[MAXN + 5], BG[MAXN + 5]; int c1[MAXN + 5], cntc1;
int c2[MAXN + 5], cntc2;
int s[MAXN + 5], cnts; int n2;
vector<int> V2[MAXN + 5];
vector<int> G2[MAXN + 5], BG2[MAXN + 5]; void Init(int _n) {
n = _n;
cntc1 = 0, cntc2 = 0, cnts = 0;
for(int i = 1; i <= n; ++i) {
G[i].clear();
BG[i].clear();
c1[i] = 0;
c2[i] = 0;
s[i] = 0;
V2[i].clear();
G2[i].clear();
BG2[i].clear();
}
return;
} void AddEdge(int u, int v) {
G[u].push_back(v);
BG[v].push_back(u);
return;
} void dfs1(int u) {
c1[u] = cntc1;
for(auto &v : G[u]) {
if(!c1[v])
dfs1(v);
}
s[++cnts] = u;
} void dfs2(int u) {
V2[cntc2].push_back(u);
c2[u] = cntc2;
for(auto &v : BG[u]) {
if(!c2[v])
dfs2(v);
}
return;
} void Kosaraju() {
for(int i = 1; i <= n; ++i) {
if(!c1[i]) {
++cntc1;
dfs1(i);
}
}
for(int i = n; i >= 1; --i) {
if(!c2[s[i]]) {
++cntc2;
dfs2(s[i]);
}
}
return;
} void Build() {
n2 = cntc2;
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
for(auto &v : G[u]) {
if(c2[v] != i) {
G2[i].push_back(c2[v]);
BG2[c2[v]].push_back(i);
}
}
}
}
for(int i = 1; i <= n2; ++i) {
sort(G2[i].begin(), G2[i].end());
G2[i].erase(unique(G2[i].begin(), G2[i].end()), G2[i].end());
sort(BG2[i].begin(), BG2[i].end());
BG2[i].erase(unique(BG2[i].begin(), BG2[i].end()), BG2[i].end());
}
return;
} void Solve() {
for(int i = 1; i <= n2; ++i) {
for(auto &u : V2[i]) {
//把原图的信息传递给新图;
}
}
//在新图上Solve;
return;
}
}

好像在不开O2的情况下这个vector版的比链式前向星版的费多了很多时间。

使用方法:

  1. Init,传入原图的点数。
  2. 使用AddEdge逐个加入有向边
  3. 调用Kosaraju划分强连通分量(V2存储强连通缩点后的新点包含原图的哪些点,c2存储原图的点对应强连通缩点后的哪个新点)。
  4. 调用Build在强连通缩点之后的新点之间建立新边到G2,并排序去重。
  5. 在Solve中书写在DAG中求解的代码,例如先把原图的点的信息传递给强连通缩点后的新点,然后在DAG上dp(注意是使用G2)。

模板 - 图论 - 强连通分量 - Kosaraju算法的更多相关文章

  1. 有向图的强连通分量——kosaraju算法

    一.前人种树 博客:Kosaraju算法解析: 求解图的强连通分量

  2. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  3. 图的强连通分量-Kosaraju算法

    输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...

  4. NOIP专题复习3 图论-强连通分量

    目录 一.知识概述 二.典型例题 1.[HAOI2006]受欢迎的牛 2.校园网络[[USACO]Network of Schools加强版] 三.算法分析 (一)Tarjan算法 (二)解决问题 四 ...

  5. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  6. 【模板】强连通分量和tarjan算法

    看了好久才终于明白了这个算法..复杂度是O(n+m). 我觉得这个算法不是很好理解,但是看懂了以后还是觉得听巧妙的. 下面给出模板代码和三组简单数据帮助理解. 代码如下: #include <s ...

  7. 模板 - 强连通分量 - Kosaraju

    Kosaraju算法 O(n+m) vector<int> s; void dfs1(int u) { vis[u] = true; for (int v : g[u]) if (!vis ...

  8. 算法模板——Tarjan强连通分量

    功能:输入一个N个点,M条单向边的有向图,求出此图全部的强连通分量 原理:tarjan算法(百度百科传送门),大致思想是时间戳与最近可追溯点 这个玩意不仅仅是求强连通分量那么简单,而且对于一个有环的有 ...

  9. 强连通分量-----Kosaraju

    芝士: 有向图强连通分量在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connect ...

随机推荐

  1. 【洛谷 P3804】 【模板】后缀自动机

    题目链接 #include <cstdio> #include <cstring> #include <algorithm> using namespace std ...

  2. iOS - 动态库上架瘦身(去调虚拟机架构),不然验证会报错。

    eg: localhost:改造 M.emor.Y$ lipo WebRTC.framework/WebRTC -thin armv7 -output WebRTC_armv7localhost:改造 ...

  3. split()方法 splice()方法 slice()方法

    split()方法是对字符串的操作:splice()和slice()是对数组的操作.slice()也可用于字符串. 一.作用对象 1.split()方法是对字符串的操作:splice()和slice( ...

  4. iOS进阶之多线程--NSThread详解

    NSThread简介 NSThread是苹果官方提供面向对象操作线程的技术,简单方便,可以直接操作线程对象,不过需要自己控制线程的生命周期.在平时使用很少,最常用到的无非就是 [NSThread cu ...

  5. workman 使用心得

    1.  服务端调试: 直接在 Events.php 中 echo 变量,   即可在  命令行工具中  看到输出的信息. 以便进行调试. 2. 客户端调试: 由于是js代码, 可以直接 用 conso ...

  6. php连接mySql,加密函数

    连接MySQL mysql_connect(servername,username,password); 面向对象: <?php $servername = "localhost&qu ...

  7. Java精通并发-wait与notify方法案例剖析与详解

    在上一节中对Object的wait.notify.notifyAll方法进行了总结,这次举一个具体案例来进行巩固,题目如下: 编写一个多线程程序,实现这样的一个目标: 1.存在一个对象,该对象有一个i ...

  8. P2018 消息传递[dp]

    题目描述 巴蜀国的社会等级森严,除了国王之外,每个人均有且只有一个直接上级,当然国王没有上级.如果A是B的上级,B是C的上级,那么A就是C的上级.绝对不会出现这样的关系:A是B的上级,B也是A的上级. ...

  9. java.lang.NoClassDefFoundError: org/apache/zookeeper/proto/SetWatches

    Session 0x16b21fa441900b6 for server 192.168.240.126/192.168.240.126:2181, unexpected error, closing ...

  10. (java)Jsoup爬虫学习--获取网页所有的图片,链接和其他信息,并检查url和文本信息

    Jsoup爬虫学习--获取网页所有的图片,链接和其他信息,并检查url和文本信息 此例将页面图片和url全部输出,重点不太明确,可根据自己的需要输出和截取: import org.jsoup.Jsou ...