(Sometimes technology enhances art. Sometimes it vandalizes art. --- 有时技术会增强艺术,有时它破坏了艺术。)

着色黑白电影是一个可以追溯到1902年的古老想法。几十年来,许多电影创作者反对将黑白电影着色的想法,并将其视为对艺术的破坏。 今天它被接受为艺术形式的增强。该技术本身已经从艰苦的手工着色转变为如今的自动化技术。 在美国,Legend Films使用其自动化技术为旧的经典影片着色。 在印度,电影Mughal-e-Azam,一个1960年发行的重磅炸弹在2004年被重新制作。几代人聚集在一起,看到它的彩色版本,从而使得这部电影第二次受到轰动!这一切都源于人工智能和深度学习技术的快速发展,众所周知,在计算机视觉领域,深度学习就像继承了某些上帝的功能,无所不能,令人叹为观止。本文将介绍如何利用深度学习将灰度图像转换为彩色图像!

简介

  在图像着色任务中,我们的目标是在给定灰度输入图像的情况下生成彩色图像。这个问题是具有一定的挑战性,因为它是多模式的——单个灰度图像可能对应许多合理的彩色图像。因此,传统模型通常依赖于重要的用户输入以及输入的灰度图像内容。 
       最近,深层神经网络在自动图像着色方面取得了显着的成功——从灰度到彩色,无需额外的人工输入。这种成功的部分原因在于深层神经网络能够捕捉和使用语义信息(即图像的实际内容),尽管目前还不能够确定这些类型的模型表现如此出色的原因,因为深度学习类似于黑匣子,暂时无法弄清算法是如何自动学习,后续会朝着可解释性研究方向发展。 
       在解释模型之前,首先以更精确地方式阐述我们所面临的问题。

问题

  我们的目的是要从灰度图像中推断出每个像素(亮度、饱和度和色调)具有3个值的全色图像,对于灰度图而言,每个像素仅具有1个值(仅亮度)。为简单起见,我们只能处理大小为256 x 256的图像,所以我们的输入图像大小为256 x 256 x 1(亮度通道),输出的图像大小为256 x 256 x 2(另两个通道)。 
       正如人们通常所做的那样,我们不是用RGB格式的图像进行处理,而是使用LAB色彩空间(亮度,A和B)。该色彩空间包含与RGB完全相同的信息,但它将使我们能够更容易地将亮度通道与其他两个(我们称之为A和B)分开。

参考:

[机器学习实战] 深度学习为黑白图像着彩色

使用OpenCV和深度学习对黑白图像进行着色

U-Net深度学习灰度图像的彩色化

Image Colorization with Convolutional Neural Networks(附Pytorch代码)

Convolutional Neural Network based Image Colorization using OpenCV

【计算机视觉】图像着色(Image Colorization)的更多相关文章

  1. 给手绘图着色(添加颜色或色彩):CVPR2020论文点评

    给手绘图着色(添加颜色或色彩):CVPR2020论文点评 Learning to Shade Hand-drawn Sketches 论文链接:https://arxiv.org/pdf/2002.1 ...

  2. 可跨平台C++开源图形图像框架:openFrameworks

    博客参考:https://www.hahack.com/codes/openframeworks-intro/#%E4%BB%80%E4%B9%88%E6%98%AF-openframeworks 和 ...

  3. Generative Adversarial Nets[pix2pix]

    本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品 ...

  4. Python爬取CSDN博客文章

    0 url :http://blog.csdn.net/youyou1543724847/article/details/52818339Redis一点基础的东西目录 1.基础底层数据结构 2.win ...

  5. Unsupervised Image-to-Image Translation Networks

    Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布.给定一个边缘分布,可以得到很多种联合分布.如果不加入额外的假设条件的话,从边缘分布无法推 ...

  6. 科普 | ​生成对抗网络(GAN)的发展史

    来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起 ...

  7. Paddle预训练模型应用工具PaddleHub

    Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...

  8. ApacheCN 深度学习译文集 2020.9

    协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 72418 ...

  9. OpenGL Shader in OpenCASCADE

    OpenGL Shader in OpenCASCADE eryar@163.com Abstract. As implementation of one of the strategic steps ...

随机推荐

  1. 面试必备技能:HashMap哪些技术点会被经常问到?

    1.为什么用数组+链表? 数组是用来确定桶的位置,利用元素的key的hash值对数组长度取模得到. 链表是用来解决hash冲突问题,当出现hash值一样的情形,就在数组上的对应位置形成一条链表.ps: ...

  2. Python爬取mn52网站美女图片以及图片防盗链的解决方法

    防盗链原理 http标准协议中有专门的字段记录referer 一来可以追溯上一个入站地址是什么 二来对于资源文件,可以跟踪到包含显示他的网页地址是什么 因此所有防盗链方法都是基于这个Referer字段 ...

  3. python+BeautifulSoup+多进程爬取糗事百科图片

    用到的库: import requests import os from bs4 import BeautifulSoup import time from multiprocessing impor ...

  4. Hive优化(整理版)

    1. 概述 1.1 hive的特征: 可以通过SQL轻松访问数据的工具,从而实现数据仓库任务,如提取/转换/加载(ETL),报告和数据分析: 它可以使已经存储的数据结构化: 可以直接访问存储在Apac ...

  5. Vue移动端项目如何使用手机预览调试

  6. Xms Xmx PermSize MaxPermSize的含义

    参数的含义 -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M -vmargs 说明后面是VM的参数,所以后面的其实都是JV ...

  7. WORD添加批注(JAVA)

    import com.spire.doc.*;import com.spire.doc.documents.CommentMark;import com.spire.doc.documents.Com ...

  8. tensorflow API _ 5 (tensorflow.summary)

    tensorflow的可视化是使用summary和tensorboard合作完成的. 基本用法 首先明确一点,summary也是op. 输出网络结构 with tf.Session() as sess ...

  9. Selenium ChromeDriver与Chrome版本映射表(更新到v77)

    ChromeDriver版本 支持的Chrome版本 v77.0.3865.40 v77 v76.0.3809.126 v76 v75.0.3770.140 v75 v74 v74 v73 v73 v ...

  10. 训练集,验证集,测试集(以及为什么要使用验证集?)(Training Set, Validation Set, Test Set)

    对于训练集,验证集,测试集的概念,很多人都搞不清楚.网上的文章也是鱼龙混杂,因此,现在来把这方面的知识梳理一遍.让我们先来看一下模型验证(评估)的几种方式. 在机器学习中,当我们把模型训练出来以后,该 ...