一看到这个题

就感觉。。。cao,,

什么东西。。。??!

然后就开始暴力求Fn

然鹅我并不会写高精(我太菜了)

只能求到大概10左右

在吧Fn给质因数分解

求出其因子个数

妄图找到什么有关的规律

但是我太过于弱小

并未找到。。。。。。。

(yjg:你找不到规律,并不代表没有规律)

然而我还瞎jb乱模

导致局面甚是混乱

但是,,,,

质因数分解貌似有点苗头,,,

而且这个东西

像极了斐波那契数列

那如果是两相结合

就是正解!!!

我的40分代码:

可能是写的太过繁琐

导致TLE

#include<cstdio>
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int mod=1e9+;
int f[][];
int n;
int main() {
freopen("fiborial.in","r",stdin);
freopen("fiborial.out","w",stdout);
cin>>n;
for(int i=; i<=n; i++) {
int k=i,t=;
for(int j=; j<=i; j++)
f[][j]=f[][j]+f[][j],f[][j]%=mod;
while(k>) {
while(k%t==) {
k/=t;
f[][t]++;
}
t++;
}
for(int j=; j<=i; j++) {
f[][j]=f[][j];
f[][j]=f[][j];
}
}
long long ans=;
for(int i=; i<=n; i++)
ans*=(f[][i]+),ans%=mod;
cout<<ans; fclose stdin;
fclose stdout;
return ;
}

那么就让我们看看

牛逼哄哄的土蛋的代码吧

上!

#include <cstdio>
#include <cstdlib> typedef long long ll; const int N = (int)5e6;
const int S = (int)1e6; const int mod = (int)1e9 + ;
int f[N + ], n, p[S + ], cnt = , m[N + ], c[N + ];
bool v[N + ]; inline int add(int a, int b) {
int r = a + b;
return r >= mod ? r - mod : r;
} int main() {
freopen("fiborial.in", "r", stdin);
freopen("fiborial.out", "w", stdout); scanf("%d", &n);
f[] = f[] = ;
for (int i = ; i <= n; ++i) f[i] = add(f[i - ], f[i - ]);
for (int i = ; i <= n; ++i) {
if (!v[i]) p[cnt++] = i, m[i] = i;
for (int j = , tmp; j < cnt && (tmp = i * p[j]) <= n; ++j) {
v[tmp] = true, m[tmp] = p[j];
if (!(i % p[j])) break;
}
} for (int i = ; i <= n; ++i)
for (int x = i; x != ; x /= m[x])
c[m[x]] = add(c[m[x]], f[n - i]);
int ans = ;
for (int i = ; i < cnt; ++i)
ans = (ll)ans * (c[p[i]] + ) % mod;
printf("%d\n", ans); return ;
}

Fiborial 题解——2019.10.14的更多相关文章

  1. C 题解———2019.10.16

    现在很痛苦,等过阵子回头看看,会发现其实那都不算事. [题目描述]定义一个排列 a 的价值为满足|a[i]-i|<=1 的 i 的数量.给出三个正整数 n,m,p,求出长度为 n 且价值恰好为 ...

  2. B 题解————2019.10.16

    相信他说的话,但不要当真 [题目描述]有一个长度为 n 的自然数序列 a,要求将这个序列恰好分成至少 m 个连续子段. 每个子段的价值为该子段的所有数的按位异或.要使所有子段的价值按位与的结果最大,输 ...

  3. A 题解————2019.10.16

    [题目描述] 对于给定的一个正整数n, 判断n是否能分成若干个正整数之和 (可以重复) ,其中每个正整数都能表示成两个质数乘积. [输入描述]第一行一个正整数 q,表示询问组数.接下来 q 行,每行一 ...

  4. 完整开发流程管理提升与系统需求分析过程 随堂笔记(day 1) 【2019/10/14】

    Top12原则: 主要资源,重要功能,依据需求重要度进行资源分配, 项目100功能 1 day -> 100Task -> 10 Dev 20% 80% 开发各阶段流程及规范   需求.架 ...

  5. 忍者钩爪 ( ninja) 题解———2019.10.19

    可以到这里测..嘿嘿嘿 题目: [问题 描述 ] 小 Q 是一名酷爱钩爪的忍者, 最喜欢飞檐走壁的感觉, 有一天小 Q 发现一个练习使用钩 爪的好地方,决定在这里大显身手. 场景的天花板可以被描述为一 ...

  6. T1 :最小值(min)题解 ——2019.10.15

    思路: 对于 % 30 的数据,可以想到一个 Dp 方程: 其中dp[i]表示分割[1,i]的最大答案 代码: #include<cstdio> #include<cstring&g ...

  7. JAVA课堂作业(2019.10.14)

    一. (1)代码 package class20191014; import java.util.Scanner; public class ClassHomework { public static ...

  8. macOS 10.14 Mojave 开发环境配置Apache多PHP版本

    第1部分:macOS 10.14 Mojave Web开发环境 在macOS上开发Web应用程序真是一种乐趣.设置开发环境有很多选择,包括广受欢迎的MAMP Pro,它在Apache,PHP和MySQ ...

  9. Pairs Forming LCM 在a,b中(a,b<=n)(1 ≤ n ≤ 10^14),有多少组(a,b) (a<b)满足lcm(a,b)==n; lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

    转自:http://www.cnblogs.com/shentr/p/5285407.html http://acm.hust.edu.cn/vjudge/contest/view.action?ci ...

随机推荐

  1. 转载 VUE+WebPack环境搭建 https://segmentfault.com/a/1190000010960666

    一.vue有两种使用方式: 1.下载vue.js <script src="vue.js"></script> 2.使用npm npm install vu ...

  2. c# mvc webapi的put报405错误

    程序在本机调试可正常修改,本机是iis11 放到服务器上,报错了:405.服务器iis7.0 返回的错误页面: <!DOCTYPE html PUBLIC "-//W3C//DTD X ...

  3. Appium中app的元素定位

    app定位方式,本文只讲Android手机的定位方式. 前提条件是adb连接到模拟器或者是手机(具体连接方式这里不再讲解),证明已连接到设备 adb devices app元素定位工具一:UI Aut ...

  4. asp.net core MVC 过滤器之ExceptionFilter过滤器(一)

    简介 异常过滤器,顾名思义,就是当程序发生异常时所使用的过滤器.用于在系统出现未捕获异常时的处理. 实现一个自定义异常过滤器 自定义一个异常过滤器需要实现IExceptionFilter接口 publ ...

  5. Django的安全攻击

    目录 Django的安全攻击 XSS XSS(跨站脚本攻击) 危害 原理 防护 csrf(Cross Site Request Forgery) csrf(跨站域请求伪造) 过程 Django 提供的 ...

  6. 关于银企直连中银行通信类 配置篇 EPIC_PROC

    简单介绍:SAP银行企业直连,英文全称:Electronic Payment Integration(For China),简称EPIC,是SAP中国为本地化的需求开发的一款产品,以银企直连为支撑,主 ...

  7. Linux命令:scp

    1.find命令: scp [参数] [原路径] [目标路径] 2.用法: scp是 secure copy的缩写, scp是linux系统下基于ssh登陆进行安全的远程文件拷贝命令.linux的sc ...

  8. vue使用vue-cli创建项目

    安装运行环境(node和npm) 安装vue-cli(查看是否安装成功vue -V) 安装webpack 新建项目 1.vue init webpack 项目名称 2.配置项目有关的信息(项目名称,开 ...

  9. selenium 开启开发者工具(F12)

    selenium 开启开发者工具(F12) options = webdriver.ChromeOptions(); options.add_argument("--auto-open-de ...

  10. 全网最全Selenium相关资源汇总

    官网: Selenium官网:https://docs.seleniumhq.org Selenium github: https://github.com/SeleniumHQ/selenium 文 ...