用set维护每个联通块里的最值,multiset维护所有块里的最值,并查集维护连通性,然后随便搞搞就行了,合并时候采用启发式合并。复杂度O(nlognlogn),大概勉强过的程度,反正跑的很慢就是了。

  代码

 #include<cstdio>
#include<set>
#define mp make_pair
#define fi first
#define sc second
using namespace std;
const int N = ;
int f[N],add[N],n,i,a[N],q,u,v,cnt;
set<pair<int,int> > s[N];
set<pair<int,int> >::iterator it;
multiset<int> S;
multiset<int>::iterator It;
char str[];
int gf(int x)
{
int p=x,t;
while (p!=f[p]) p=f[p];
while (x!=p)
{
t=f[x];f[x]=p;x=t;
}
return p;
}
int main()
{
scanf("%d",&n);
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
f[i]=i;
s[i].insert(mp(a[i],i));
S.insert(a[i]);
}
scanf("%d",&q);
for (i=;i<=q;i++)
{
scanf("%s",str);
if (str[]=='F')
{
if (str[]=='')
{
scanf("%d",&u);
printf("%d\n",a[u]+add[gf(u)]+cnt);
}
else
if (str[]=='')
{
scanf("%d",&u);
printf("%d\n",(*(--s[gf(u)].end())).fi+add[gf(u)]+cnt);
}
else
printf("%d\n",*(--S.end())+cnt);
} if (str[]=='A')
{
if (str[]=='')
{
scanf("%d%d",&u,&v);
S.erase(S.find((*(--s[gf(u)].end())).fi+add[gf(u)]));
s[gf(u)].erase(mp(a[u],u));
a[u]+=v;
s[gf(u)].insert(mp(a[u],u));
S.insert((*(--s[gf(u)].end())).fi+add[gf(u)]);
}
else
if (str[]=='')
{
scanf("%d%d",&u,&v);
S.erase(S.find((*(--s[gf(u)].end())).fi+add[gf(u)]));
add[gf(u)]+=v;
S.insert((*(--s[gf(u)].end())).fi+add[gf(u)]);
}
else
{
scanf("%d",&u);
cnt+=u;
}
} if (str[]=='U')
{
scanf("%d%d",&u,&v);
u=gf(u);v=gf(v);
if (u!=v)
{
if (s[u].size()>s[v].size()) u^=v^=u^=v;
S.erase(S.find((*(--s[gf(u)].end())).fi+add[gf(u)]));
S.erase(S.find((*(--s[gf(v)].end())).fi+add[gf(v)]));
f[u]=v;
for (it=s[u].begin();it!=s[u].end();it++)
{
a[(*it).sc]=(*it).fi+add[u]-add[v];
s[v].insert(mp(a[(*it).sc],(*it).sc));
}
S.insert((*(--s[gf(v)].end())).fi+add[gf(v)]);
s[u].clear();
}
}
}
}

bzoj2333 [SCOI2011]棘手的操作的更多相关文章

  1. 真--可并堆模板--BZOJ2333: [SCOI2011]棘手的操作

    n<=300000个点,开始是独立的,m<=300000个操作: 方法一:单点修改.查询,区间修改.查询?等等等等这里修改是块修改不是连续的啊,那就让他连续呗!具体方法:离线后,每次连接两 ...

  2. BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...

  3. [bzoj2333] [SCOI2011]棘手的操作 (可并堆)

    //以后为了凑字数还是把题面搬上来吧2333 发布时间果然各种应景... Time Limit: 10 Sec  Memory Limit: 128 MB Description 有N个节点,标号从1 ...

  4. bzoj千题计划217:bzoj2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 读入所有数据,先模拟一遍所有的合并操作 我们不关心联通块长什么样,只关心联通块内有谁 所以可以 ...

  5. 2019.01.17 bzoj2333: [SCOI2011]棘手的操作(启发式合并)

    传送门 启发式合并菜题. 题意:支持与连通块有关的几种操作. 要求支持连边,单点修改,连通块修改,全局修改和单点查值,连通块查最大值和全局最大值. 我们对每个连通块和答案用可删堆维护最大值,然后用启发 ...

  6. BZOJ2333:[SCOI2011]棘手的操作(Splay)

    Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: ...

  7. BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】

    题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...

  8. bzoj2333 [SCOI2011]棘手的操作(洛谷3273)

    题目描述 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作:U x y: 加一条边,连接第x个节点和第y个节点A1 x v: 将第x个节点的权 ...

  9. (右偏树)Bzoj2333: [SCOI2011]棘手的操作

    题面 戳我 Sol 右偏树滑稽+并查集 再在全局开一个可删除的堆(priority_queue) 注意细节 # include <bits/stdc++.h> # define RG re ...

随机推荐

  1. acl 是一个跨平台的网络通信库及服务器编程框架

    acl 工程是一个跨平台(支持LINUX,WIN32,Solaris,MacOS,FreeBSD)的网络通信库及服务器编程框架,同时提供更多的实用功能库.通过该库,用户可以非常容易地编写支持多种模式( ...

  2. 【Android测试】【第三节】ADB——源码浅谈

    ◆版权声明:本文出自carter_dream的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/4651724.html 前言 由于本人精力 ...

  3. input[type=checkbox]

    一个问题,今天用jquery-1.11.3.min.js时遇到的关于input复选框的问题. 类似于以下代码: <ul class="demo">  <li> ...

  4. 使用Areas分离ASP.NET MVC项目

    为什么需要分离? 我们知道MVC项目各部分职责比较清晰,相比较ASP.NET Webform而言,MVC项目的业务逻辑和页面展现较好地分离开来,这样的做法有许多优点,比如可测试,易扩展等等.但是在实际 ...

  5. Codeforces Round #367 (Div. 2)---水题 | dp | 01字典树

    A.Beru-taxi 水题:有一个人站在(sx,sy)的位置,有n辆出租车,正向这个人匀速赶来,每个出租车的位置是(xi, yi) 速度是 Vi;求人最少需要等的时间: 单间循环即可: #inclu ...

  6. C# winForm程序开机启动和托盘显示 (转http://blog.csdn.net/xinyue3054/article/details/6599508)

    这段时间一直进行cs项目,故整理下开机自动运行.托盘.显示.隐藏. (1).在窗口上点击关闭按钮或者最小化时将托盘显示: (2).双击托盘图标显示窗口: (3).右键点击托盘图标提供三个菜单选项,“退 ...

  7. sql 主外键

    alter table Orders add CONSTRAINT fk_PerOrders FOREIGN KEY(id) REFERENCES Persons(Id) 以上SQL中,Persons ...

  8. 深入理解OpenGL拾取模式(OpenGL Picking)

    深入理解OpenGL拾取模式(OpenGL Picking) 本文转自:http://blog.csdn.net/zhangci226/article/details/4749526 在用OpenGL ...

  9. ava获得当前文件路径

    第一种: File f = new File(this.getClass().getResource("/").getPath()); System.out.println(f); ...

  10. ASP.NET HighStock

    参考博客HighCharts/Highstock使用小结,使用汉化及中文帮助文档 参考博客highcharts与highstock实例