分类 kNN
#coding=utf-8
from numpy import *
import operator
from os import listdir
import matplotlib
import matplotlib.pyplot as plt #从文件当中读取内容,保存到矩阵当中
#因为文件当中有两部分内容,一部分是三个原因,另一部分是结果
def file2matrix(filename):
fr=open(filename)
numberOfLines=len(fr.readlines())#计算文件的行数
returnMat=zeros((numberOfLines,3))#生成一个零矩阵
classLabelVector=[]#生成一个序列,主要操作是切片
fr=open(filename)
index=0
for line in fr.readlines():
line=line.strip()#读取一行的内容
listFromLine=line.split('\t')#将line分割成3个列
returnMat[index,:]=listFromLine[0:3]#取前三个到切片放到第index行
classLabelVector.append(int(listFromLine[-1]))#取最后一个追加到classLabelVector
index+=1#index自加
return returnMat,classLabelVector #归一化数据
def autoNorm(dataSet):
#获取每一列的最小值,也就是说结果是一个3维的数组,数组的元素
#是每一列到最小值
#如果0改为1,那么获取到的是每一行的最小值,也就是一个数组
minVals=dataSet.min(0)
maxVals=dataSet.max(0)#获取每一列的最大值
ranges=maxVals-minVals
normDataSet=zeros(shape(dataSet))#生成一个零矩阵 #shape,显示一个矩阵的行列,如果没有[0],那么输出
#(1000,3)也就是1000行,3列,
# [0]表示第一个元素(行),[1]表示第二个元素(列)
m=dataSet.shape[0]#获取行的行的数然后复制给m
#tile是一个复制函数,将minVals复制
#行的方向上复制m次你,列的方向上复制1次
normDataSet=dataSet-tile(minVals,(m,1))
normDataSet=normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals #绘图
def draw():
fig=plt.figure()
ax=fig.add_subplot(111)
datingDataMat,datingLabels= file2matrix('datingTestSet.txt')
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],
15.0*array(datingLabels),15.0*array(datingLabels))
plt.show() #分类
def classify0(inX, dataSet, labels, k):
#获取到dataSet的行数量
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
#排序,但是矩阵并不修改,只是获取到修改后的下标
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
#获取到分类
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] #识别过程
def datingClassTest():
hoRatio=0.10
#从文件当中读取txt文件,转化为矩阵
datingDataMat,datingLabels=file2matrix('datingTestSet.txt')
normMat,ranges,minVals=autoNorm(datingDataMat) m=normMat.shape[0]
numTestVecs=int(m*hoRatio)
errorCount=0.0
#从1到100
for i in range(numTestVecs):
#第一个参数是待分类到矩阵
#normMat[i,:]代表一个行,也就是矩阵的第i行的一位矩阵
#normMat[numTestVecs:m,:]使用从100到1000行的矩阵去分类
#datingLabels[numTestVecs:m]使用从100到1000行的结果去分类
#3代表kNN当中的k
classfierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],
datingLabels[numTestVecs:m],3)
print "机器人认为的结果是%d,正确的答案是:%d"%(classfierResult,datingLabels[i])
if(classfierResult!=datingLabels[i]):
errorCount+=1.0
print "错误律是:%f" %(errorCount/float(numTestVecs)) datingClassTest() """
最初错误原因
dataSet=file2matrix('datingTestSet.txt')
print dataSet#有两个返回值,会把后一个返回值追加到dataSet上面,构成元祖
print "*****************************"
datingDataMat,datingLabels=file2matrix('datingTestSet.txt')
print datingDataMat
print "*****************************"
print datingLabels
"""
分类 kNN的更多相关文章
- 机器学习算法 - 最近邻规则分类KNN
上节介绍了机器学习的决策树算法,它属于分类算法,本节我们介绍机器学习的另外一种分类算法:最近邻规则分类KNN,书名为k-近邻算法. 它的工作原理是:将预测的目标数据分别跟样本进行比较,得到一组距离的数 ...
- 最邻近规则分类KNN算法
例子: 求未知电影属于什么类型: 算法介绍: 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已 ...
- 机器学习--最邻近规则分类KNN算法
理论学习: 3. 算法详述 3.1 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选 ...
- 2019-08-01【机器学习】有监督学习之分类 KNN,决策树,Nbayes算法实例 (人体运动状态信息评级)
样本: 使用的算法: 代码: import numpy as np import pandas as pd import datetime from sklearn.impute import Sim ...
- python实现简单分类knn算法
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代 ...
- JAVA实现KNN分类
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/51064307 http://www.llwjy.com/blogdetail/f ...
- 室内定位系列(三)——位置指纹法的实现(KNN)
位置指纹法中最常用的算法是k最近邻(kNN):选取与当前RSS最邻近的k个指纹的位置估计当前位置,简单直观有效.本文介绍kNN用于定位的基本原理与具体实现(matlab.python). 基本原理 位 ...
- 人体姿态的相似性评价基于OpenCV实现最近邻分类KNN K-Nearest Neighbors
最近学习了人体姿态的相似性评价.需要用到KNN来统计与当前姿态相似的k个姿态信息. 假设我们已经有了矩阵W和给定的测试样本姿态Xi,需要寻找与Xi相似的几个姿态,来估计当前Xi的姿态标签. //knn ...
- 视觉机器学习------KNN学习
KNN(K-Nearest Neighbor algorithm, K最近邻方法)是一种统计分类器,属于惰性学习. 基本思想:输入没有标签即未经分类的新数据,首先提取新数据的特征并与测试集中的每一个数 ...
随机推荐
- 第19章 使用PXE+Kickstart部署无人值守安装
章节概述: 本章节将教会您通过PXE+DHCP+TFTP+VSftpd+Kickstart服务程序搭建出无人值守安装系统,从而批量部署客户机系统. 这种系统能够实现自动化运维.避免了重复性劳动,帮助提 ...
- 关于DCMTK3.6.0源代码编译的总结
1.DCMTK cmake出来的代码是一样的.MT和MD版本的区别在于DCMTK工程下的每个子工程的代码生成中的MT还是MD,只要修改成为相应的值就可以了. 2.依赖包的选择.依赖包必须与上面中所说的 ...
- centos安装ssdb
在编译之前要下gcc编译器 yum -y install gcc* 编译和安装 wget --no-check-certificate https://github.com/ideawu/ssdb ...
- Jquery获取数据并生成下拉菜单
<script type="text/javascript"> $(document).ready(function() { GetByJquery(); $(&quo ...
- IIS安装时,添加/编辑应用程序扩展名映射 确定按钮不可用。
原因是:执行文件的路径太长,需要激活按钮. 方法一:选择较短路径的执行文件,先激活按钮. 方法二:点击该路径,就可以激活确认按钮了.
- 7.python模块补充
此文章是对上节文章模块的补充 一,xml模块 xml是实现不同语言或程序之间进行数据交换的协议,可扩展标记语言,标准通用标记语言的子集,是一种用于标记电子文件使其具有结构性的标记语言.xml的格式如下 ...
- Emacs 从入门到精通
1 前言 不想再说废话了,既然你会阅读这篇文档,说明你多少对Emacs有 些兴趣,或者已 经非常熟悉Emacs的基础操作了,并且希望有所提高.因此我不需要再把"编辑器 之神,还是神的编辑器& ...
- Cocos2d-JS的屏幕适配方案
Cocos2d引擎为游戏开发者提供了屏幕适配策略(Resolution Policy)解决方案. 使用方式 1. 设置屏幕适配策略(Resolution Policy) 如果你还没有用过Resolut ...
- frameset框架下,刷新整个页面
<a href="index.jsp" target="_parent"> index.jsp主frameset页面
- LinuxC语言读取文件,分割字符串,存入链表,放入另一个文件
//file_op.c #include <string.h> #include <stdio.h> #include <stdlib.h> struct info ...