LightOJ1013 Love Calculator(DP)
容易猜测到包含s1、s2序列的串的最短长度是LCS(s1,s2) + ( len(s1) - LCS(s1,s2) ) + ( len(s2) - LCS(s1,s2) ) ,即:
len(s1)+len(s2)-LCS(s1,s2)
接下来求方案数,可以想到:
dp[k][i][j]表示由s1前i位和s2前j位的序列构成的长度为k的串的方案数
dp[k][i][j]是由dp[k-1][i-1][j]、dp[k-1][i][j-1]和dp[k-1][i-1][j-1]转移的,而从dp[k-1][i-1][j-1]转移则要满足s1[i]==s2[j]的条件。
转移方程我纠结了好久,才“试”出来:
dp[k][i][j] = (s1[i]==s2[j]) ? dp[k-1][i-1][j-1] : dp[k-1][i-1][j]+dp[k-1][i][j-1]
然后因为自己想的一个数据s1="aa",s2="ab"又纠结了好久,才“试”出初始状态是:
d[1][1][0]=d[1][0][1]=1
(s1[1]==s2[1]) ? d[1][1][1]=1 : d[1][1][1]=0
最后提交就AC了,有点不明觉厉。。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int LCS[][];
long long d[][][];
int main(){
int t;
char s1[],s2[];
scanf("%d",&t);
for(int cse=; cse<=t; ++cse){
scanf("%s%s",s1+,s2+); int l1=strlen(s1+),l2=strlen(s2+);
memset(LCS,,sizeof(LCS));
for(int i=; i<=l1; ++i){
for(int j=; j<=l2; ++j){
if(s1[i]==s2[j]) LCS[i][j]=LCS[i-][j-]+;
else LCS[i][j]=max(LCS[i-][j],LCS[i][j-]);
}
}
int len=l1+l2-LCS[l1][l2]; memset(d,,sizeof(d));
d[][][]=d[][][]=;
if(s1[]==s2[]) d[][][]=;
for(int k=; k<=len; ++k){
for(int i=; i<=l1; ++i){
for(int j=; j<=l2; ++j){
if(i== && j==) continue;
if(i==) d[k][i][j]=d[k-][i][j-];
else if(j==) d[k][i][j]=d[k-][i-][j];
else if(s1[i]==s2[j]) d[k][i][j]=d[k-][i-][j-];
else d[k][i][j]=d[k-][i-][j]+d[k-][i][j-];
}
}
} printf("Case %d: %d %lld\n",cse,len,d[len][l1][l2]);
}
return ;
}
LightOJ1013 Love Calculator(DP)的更多相关文章
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- 最长公共子序列长度(dp)
/// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...
随机推荐
- [BZOJ1101][POI2007]Zap
[BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...
- 更改win7开机界面
按“win+R”组合键,打开运行框,在打开框中输入"regedit”,单击“确定”. 打开注册表编辑器,依次展开注册表里: “HKEY_LOCAL_MACHINE---SOFTWARE--- ...
- PhpStorm主题
图的github仓库有很多编辑器的主题,jetbrains目录下都是PhpStorm支持的主题 1.到http://daylerees.github.io/预览各个主题的风格,找到自己喜欢的: 2.在 ...
- 【OpenStack】OpenStack系列3之Swift详解
Swift安装部署(与keystone依赖包有冲突,需要安装不同版本eventlet) 参考:http://www.server110.com/openstack/201402/6662.html h ...
- Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...
- Java面向对象的继承
继承也是面向对象的又一重要特性,继承是类于类的一种关系,通俗来说狗属于动物类,那么狗这个类就继承了动物类 java中的继承是单继承的,一个类只能继承与一个父类 子类继承父类之后,子类就拥有了父类的所有 ...
- FastReport安装说明(中文版)
FastReport安装说明(中文版) 内容列表 I. IntroductionI. 介绍II. Manual installing of the FastReport packagesII. 手动安 ...
- Java for LeetCode 172 Factorial Trailing Zeroes
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...
- Cocos2d-JS游戏导演
什么是游戏的导演 具体来说,Cocos2d-JS中的导演是一个对象,它负责设置游戏的运行环境,控制游戏的住循环并且管理场景和场景的切换. 导演的任务 Cocos2d-JS中导演对象名为:cc.dire ...
- MFC 密码框
使用Edit Control 在属性面板中,设置“行为”为password