In mathematics, Legendre functions are solutions to Legendre's differential equation:

In particular, it occurs when solving Laplace's equation (and relatedpartial differential equations) in spherical coordinates.

The polynomials may be denoted by Pn(x) , called the Legendre polynomial of order n. The polynomials are either even or odd functions of x for even or odd orders n. The first few polynomials are shown below.

The general form of a Legendre polynomial of order n is given by the sum:

From the Legendre polynomials can be generated another important class of functions for physical problems, the associated Legendre functions.

Legendre polynomials的更多相关文章

  1. C++历史(The History of C++)

    C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...

  2. C++历史

    C++历史 早期C++ •1979: 首次实现引入类的C(C with Classes first implemented) 1.新特性:类.成员函数.继承类.独立编译.公共和私有访问控制.友元.函数 ...

  3. 加州理工学院公开课:机器学习与数据挖掘_Regularization(第十二课)

    课程简单介绍: 接上一节课,这一节课的主题是怎样利用 Regularization 避免 Overfitting.通过给如果集设定一些限制条件从而避免  Overfitting,可是如果限制条件设置的 ...

  4. 特征的非线性变换(Feature Non-linear Transformation)

    有时候特征x和目标y不呈线性关系,线性模型y=wx+b不能很好地反映事物的规律或者无法对事物进行有效分类,因此此时我们需要使用非线性模型. (x=([x1,x2,...,xn])T,w=([w1,w2 ...

  5. Pi和e的积分

    Evaluate integral $$\int_{0}^{1}{x^{-x}(1-x)^{x-1}\sin{\pi x}dx}$$ Well,I think we have $$\int_{0}^{ ...

  6. 基于预计算的全局光照(Global Illumination Based On Precomputation)

    目录 基于图像的光照(Image Based Lighting,IBL) The Split Sum Approximation 过滤环境贴图 预计算BRDF积分 预计算辐射度传输(Precomput ...

  7. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

  8. 1002. A+B for Polynomials (25)

    题目链接:https://www.patest.cn/contests/pat-a-practise/1002 原题如下: This time, you are supposed to find A+ ...

  9. PAT (Advanced Level) Practise:1002. A+B for Polynomials

    [题目链接] This time, you are supposed to find A+B where A and B are two polynomials. Input Each input f ...

随机推荐

  1. PhpWind 8.7中禁止后台管理员随意修改会员用户名功能

    有人反映PHPWind 8.7中后台可以直接修改用户名的功能太过随意,干脆禁掉. OK,研究一下他的代码,admin/usermange.php  tempalate/admin/usermange. ...

  2. 无法打开Android SDK Manager的解决办法

    不知道从什么时候开始,打开Android的SDK Manager.exe时,命令行窗口一闪就自动关掉了. 想更新一些Android的东西都更新不了. 查了一下,解决办法是: 环境变量的系统变量Path ...

  3. 从零开始学习Linux(cp 命令)

    功能: 复制文件或目录说明: cp指令用于复制文件或目录,如同时指定两个以上的文件或目录,且最后的目的地是一个已经存在的目录,则它会把前面指定的所有文件或目录复制到此目录中.若同时指定多个文件或目录, ...

  4. u-boot中nandflash初始化流程分析(转)

    u-boot中nandflash初始化流程分析(转) 原文地址http://zhuairlunjj.blog.163.com/blog/static/80050945201092011249136/ ...

  5. 【Effective Java】4、覆盖equals时请遵守通用约定

    package cn.xf.cp.ch02.item8.transitivity; public class Point { private final int x; private final in ...

  6. RCA端子颜色(红、白、黄)

    RCA端子(红白黄)的作用: 黄:视频 红:左声道 白:右声道 RCA为两口插头,红色代表左声道,白色为右声道,3.5(AUX口)同样为立体声接头,虽然它只有一个端口,同样也具有左右声道分开传输的功能 ...

  7. 控制台(Console)报错:java.io.IOException: Broken pipe

    控制台(Console)输出: java.io.IOException: Broken pipe at sun.nio.ch.FileDispatcherImpl.write0(Native Meth ...

  8. JQuery EasyUI Tree

    Tree 数据转换 所有节点都包含以下属性: id:节点id,这个很重要到加载远程服务器数据 which is important to load remote data text: 显示的节点文本 ...

  9. 修改list中附件排序(sharepoint 2010)

    修改文件C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\CONTROLTEMPLATE ...

  10. 安卓第六天笔记--ListView

    安卓第六天笔记--ListView 1.AdapteView AdapteView 继承ViewGroup它的本质是容器 AdapterView派生了3个子类: AbsListView AbsSpin ...