Conjugate prior relationships
The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.
Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.
These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.
Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.

See this page for more
diagrams on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting.
Parameterizations
Let C(n, k)
denote the binomial
coefficient(n, k).
The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.
The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.
The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.
The Bernoulli distribution has probability of success p.
The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).
The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).
The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).
The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.
The normal distribution parameterized in terms of precision τ (τ = 1/σ2)
has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).
The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.
Posterior parameters
For each sampling distribution, assume we have data x1, x2,
…, xn.
If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.
If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.
If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.
If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).
If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).
If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.
If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).
If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.
References
A
compendium of conjugate priors by Daniel Fink.
See also Wikipedia’s article on conjugate
priors.
Conjugate prior relationships的更多相关文章
- 共轭先验(conjugate prior)
共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...
- The Joys of Conjugate Priors
The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...
- 转:Conjugate prior-共轭先验的解释
Conjugate prior-共轭先验的解释 原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...
- Gibbs sampling
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
随机推荐
- [资源]PHP使用消息队列
利用PHP操作Linux消息队列完成进程间通信 基于HTTP协议的轻量级开源简单队列服务:HTTPSQS[原创] Redis队列——PHP操作简单示例 入队操作 <?php $redis = n ...
- php基础23:数值与数值函数
<?php //1.自动转换 $a = 5; $b = "5a"; $c = $a + $b; echo $c; echo "<br>"; $ ...
- [原]iBatis.Net(C#)系列一:简介及运行环境
转载请注明http://www.cnblogs.com/13590/archive/2013/02/27/2934580.html 摘要:介绍iBatis.Net的基本情况和运行原理,运行环境中各参数 ...
- ReactNative之style使用指南
ReactNative中能使用的css样式有哪些呢Valid style props: [ "alignItems", "alignSelf", & ...
- java系列:《java核心技术 卷1》学习笔记,chapter 11 调试技巧
11. 6 调试技巧 1)一个不太为人所知却非常有效的技巧是在每个类中放一个main方法,这样就可以对每个类进行单元测试.这个方法可以保留,因为在java虚拟机只调用启动类的main方法. 2) ...
- 网络封包分析工具Charles使用
网址:http://www.charlesproxy.com/ 截取网络封包的工具. 简介 Charles是在Mac下常用的截取网络封包的工具,在做iOS开发时,我们为了调试与服务器端的网络通讯协议, ...
- C++实现反射机制
NET下的很多技术都是基于反射机制来实现的,反射让.NET平台下的语言变得得心应手.最简单的,比如枚举类型,我们我可以很容易的获得一个枚举变量的数值以及其名称字符串. 可是,在C++中,枚举变量本质上 ...
- SVN技术交流提纲
SVN技术交流提纲:http://lazio10000.github.io/tech/SVN/#/bored
- Dandelion - Distributed Computing on GPU Clusters
linq on GPUs 非常期待中 看起来很cool,期望早点面世
- 从数据包谈如何封杀P2SP类软件
概述 1.1背景介绍 我们经常在用户的网络中发现大量的P2P应用,占用了网络中大量的宝贵带宽资源,用户的网络管理者也知道内网中存在这些应用,也采取了一些限制措施,但是效果并不一定理想.本文试着以数据包 ...