Conjugate prior relationships
The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.
Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.
These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.
Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.

See this page for more
diagrams on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting.
Parameterizations
Let C(n, k)
denote the binomial
coefficient(n, k).
The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.
The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.
The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.
The Bernoulli distribution has probability of success p.
The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).
The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).
The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).
The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.
The normal distribution parameterized in terms of precision τ (τ = 1/σ2)
has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).
The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.
Posterior parameters
For each sampling distribution, assume we have data x1, x2,
…, xn.
If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.
If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.
If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.
If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).
If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).
If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.
If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).
If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.
References
A
compendium of conjugate priors by Daniel Fink.
See also Wikipedia’s article on conjugate
priors.
Conjugate prior relationships的更多相关文章
- 共轭先验(conjugate prior)
共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...
- The Joys of Conjugate Priors
The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...
- 转:Conjugate prior-共轭先验的解释
Conjugate prior-共轭先验的解释 原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...
- Gibbs sampling
In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...
- Wishart distribution
Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...
- [综] Latent Dirichlet Allocation(LDA)主题模型算法
多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&§ionid=983 二项分布和多项分布 http:// ...
- PRML读书笔记——2 Probability Distributions
2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...
- 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
随机推荐
- nginx缓存模块配置总结proxy_cache(未完)
简介:此缓存设置用到了第三方模块purge,使用的时候就在源链接和访问的具体内容之间加入关键字"/purge/"即可. 如:访问http://192.168.0.1/a.png 会 ...
- 自定义progressBar的旋转圆圈
在手工打造下拉刷新功能 自带的progressBar太丑了 做个也不费事,一个简单的圆形 旋转动画加type是sweep的gradient渐变 <rotate //旋转动画xmlns:andro ...
- Android连接网络打印机,jSocket连接网络打印机
老大写的一个打印工具类,记录一下. package com.Ieasy.Tool; import android.annotation.SuppressLint; import java.io.IOE ...
- [CareerCup] 5.6 Swap Odd and Even Bits 交换奇偶位
5.6 Write a program to swap odd and even bits in an integer with as few instructions as possible (e. ...
- MMDrawerController第三方库的使用(根据导航item+滚动条progressView实现的手势滑动切换视图的)
https://github.com/mutualmobile/MMDrawerController MMDrawerControlleris边抽屉导航容器视图控制器用来支持越来越多的应用程序利用抽屉 ...
- LinuxMint(同Ubuntu)下安装配置NFS设置共享目录
假设有两台机器, 机器A:10.68.93.2 机器B:10.68.93.3 现在需要将机器A上的/opt/nfsshare共享出去,然后挂载到机器B的/nfsshare目录下. 1. 在机器A上: ...
- [bzoj1296][SCOI2009]粉刷匠(泛化背包)
http://www.lydsy.com:808/JudgeOnline/problem.php?id=1296 分析: 首先预处理出每一行的g[0..T]表示这一行刷0..T次,最多得到的正确格子数 ...
- [poj2184]我是来水一下背包的
http://poj.org/problem?id=2184 题意:01背包的变种,就是说有2组值(有负的),你要取一些物品是2阻值的和非负且最大 分析: 1.对于负的很好处理,可以把他们都加上一个数 ...
- [C#基础]ref和out的区别
在C#中通过使用方法来获取返回值时,通常只能得到一个返回值.因此,当一个方法需要返回多个值的时候,就需要用到ref和out,那么这两个方法区别在哪儿呢? MSDN: ref 关键字使参数按 ...
- 第四十四课:jQuery UI和jQuery easy UI
jQuery UI是jQuery官方提供的功能效果和UI样式.作为官方出的东西,它一直没有被人们看重,一是它没有datagrid,tree等UI库必备的东西,二是它修改太过频繁,体积庞大.其实它所有以 ...