Conjugate prior relationships

The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.

Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.

These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.

Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.

See this page for more
diagrams
 on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting
.

Parameterizations

Let C(n, k)
denote the binomial
coefficient
(n, k).

The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.

The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.

The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.

The Bernoulli distribution has probability of success p.

The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).

The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).

The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).

The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.

The normal distribution parameterized in terms of precision τ (τ = 1/σ2)

has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).

The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.

Posterior parameters

For each sampling distribution, assume we have data x1, x2,
…, xn.

If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.

If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.

If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.

If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).

If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).

If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.

If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).

If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.

References

A
compendium of conjugate priors
 by Daniel Fink.

See also Wikipedia’s article on conjugate
priors
.

Conjugate prior relationships的更多相关文章

  1. 共轭先验(conjugate prior)

    共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...

  2. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  3. 转:Conjugate prior-共轭先验的解释

    Conjugate prior-共轭先验的解释    原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...

  4. Gibbs sampling

    In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...

  5. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  6. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  7. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  8. 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

    在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...

  9. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

随机推荐

  1. 不可不知的C#基础 4. 延迟加载 -- 提高性能

    延迟加载(lazy loading) 设计模式是为了避免一些无谓的性能开销而提出来的,所谓延迟加载就是当在真正需要数据(读取属性值)的时候,才真正执行数据加载操作. 有效使用它可以大大提高系统性能. ...

  2. memcached协议

    memcached协议 旧版:http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt 新版:https://githu ...

  3. xp-win7-win8的基础到精通教程-系统优化减肥教程-windos装mac

    是否还在使用别人封装的系统?是否还在担心下载后的系统是有病毒的?还在为 安装好新系统后,里面安装的软件全是自己不需要的?担心流氓软件绑定浏览器主页?担心 系统重装后,自己所有的编程软件都需要重新安装? ...

  4. GEOS库学习之四:几何关系判断

    原理上一篇已经介绍过了,这篇就直接进行程序练习 #include "geos.h" GeometryFactory factory; //创建一条环线,与线的区别就是环线是闭合的. ...

  5. LeetCode:Word Break II(DP)

    题目地址:请戳我 这一题在leetcode前面一道题word break 的基础上用数组保存前驱路径,然后在前驱路径上用DFS可以构造所有解.但是要注意的是动态规划中要去掉前一道题的一些约束条件(具体 ...

  6. 学习笔记——Maven pom.xml配置详解

    POM的全称是“ProjectObjectModel(项目对象模型)”. pom.xml详解 声明规范 <projectxmlns="http://maven.apache.org/P ...

  7. TableCell高度的控制

    TableCell高度的控制 计算并指定行高rowHeight 强制指定:self.tableView.rowHeight = 88 或实现UITableViewDelegate.tableView( ...

  8. deerlet-redis-client添加集群支持,邀请各路大神和菜鸟加入。

    引言 经过几周的修改,deerlet已经添加了对于redis集群的支持,策略与memcached客户端一样,采用一致性Hash.不过目前Hash的算法取自Java自带的String类型的HashCod ...

  9. 微信小程序开发:Flex布局

    微信小程序页面布局方式采用的是Flex布局.Flex布局,是W3c在2009年提出的一种新的方案,可以简便,完整,响应式的实现各种页面布局.Flex布局提供了元素在容器中的对齐,方向以及顺序,甚至他们 ...

  10. 7、面向对象以及winform的简单运用(委托)

    委托 1.概念: 委托可以看成是一个函数的“容器”,将某一具体的函数“装入”后,就可以把它当成函数一样使用.委托变量可看成是一种类型安全的函数指针,它只能接收符合其要求的函数地址. 2.定义方法:de ...