Conjugate prior relationships

The following diagram summarizes conjugate prior relationships for a number of common sampling distributions.

Arrows point from a sampling distribution to its conjugate prior distribution. The symbol near the arrow indicates which parameter the prior is unknown.

These relationships depends critically on choice of parameterization, some of which are uncommon. This page uses the parameterizations
that make the relationships simplest to state, not necessarily the most common parameterizations. See footnotes below.

Click on a distribution to see its parameterization. Click
on an arrow to see posterior parameters.

See this page for more
diagrams
 on this site including diagrams for probability and statistics, analysis, topology, and category theory. Also, please contact me if you’re interested in Bayesian
statistical consulting
.

Parameterizations

Let C(n, k)
denote the binomial
coefficient
(n, k).

The geometric distribution has only one parameter, p,
and has PMF f(x)
= p (1-p)x.

The binomial distribution with parameters n and p has
PMF f(x)
= C(n, x) px(1-p)n-x.

The negative binomial distribution with parameters r and p has
PMF f(x)
= C(r + x –
1, x)pr(1-p)x.

The Bernoulli distribution has probability of success p.

The beta distribution has PDF f(p)
= Γ(α + β) pα-1(1-p)β-1 /
(Γ(α) Γ(β)).

The exponential distribution parameterized in terms of the rate λ has PDF f(x)
= λ exp(-λ x).

The gamma distribution parameterized in terms of the rate has PDF f(x)
= βα xα-1exp(-β x)
/ Γ(α).

The Poisson distribution has one parameter λ and PMF f(x)
= exp(-λ) λx/ x!.

The normal distribution parameterized in terms of precision τ (τ = 1/σ2)

has PDF f(x)
= (τ/2π)1/2 exp( -τ(x –
μ)2/2 ).

The lognormal distribution parameterized in terms of precision τ has PDF f(x)
= (τ/2π)1/2exp( -τ(log(x)
– μ)2/2 ) / x.

Posterior parameters

For each sampling distribution, assume we have data x1, x2,
…, xn.

If the sampling distribution for x is binomial(m, p)
with m known, and the prior distribution is beta(α,
β), the posterior distribution for p is beta(α
+ Σxi,
β + mn – Σxi).
The Bernoulli is the special case of the binomial with m =
1.

If the sampling distribution for x is negative
binomial(r, p) with r known,
and the prior distribution is beta(α, β), the posterior distribution for p is beta(α
+ nr, β + Σxi).
Thegeometric is the special case of the negative binomial with r =
1.

If the sampling distribution for x is gamma(α,
β) with α known, and the prior distribution on β is gamma(α0,
β0), the posterior distribution
for β is gamma(α0 + n,
β0 + Σxi).
Theexponential is a special case of the gamma with α = 1.

If the sampling distribution for x is Poisson(λ),
and the prior distribution on λ is gamma(α0,
β0), the posterior on λ is gamma(α0 +
Σxi, β0 + n).

If the sampling distribution for x is normal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Σxi)/(τ0 + nτ),
τ0 + nτ).

If the sampling distribution for x is normal(μ, τ) with μ known, and the prior distribution on τ is gamma(α,
β), the posterior distribution on τ is gamma(α + n/2,
(n-1)S2)
where S2 is
the sample variance.

If the sampling distribution for x is lognormal(μ, τ) with τ known, and the prior distribution on μ is normal(μ0,
τ0), the posterior distribution
on μ is normal((μ0 τ0 +
τ Πxi)/(τ0 + nτ),
τ0 +nτ).

If the sampling distribution for x is lognormal(μ,
τ) with μ known, and the prior distribution on τ is gamma(α, β), the posterior distribution on τ is gamma(α
+ n/2, (n-1)S2)
where S2 is
the sample variance.

References

A
compendium of conjugate priors
 by Daniel Fink.

See also Wikipedia’s article on conjugate
priors
.

Conjugate prior relationships的更多相关文章

  1. 共轭先验(conjugate prior)

    共轭是贝叶斯理论中的一个概念,一般共轭要说是一个先验分布与似然函数共轭: 那么就从贝叶斯理论中的先验概率,后验概率以及似然函数说起: 在概率论中有一个条件概率公式,有两个变量第一个是A,第二个是B , ...

  2. The Joys of Conjugate Priors

    The Joys of Conjugate Priors (Warning: this post is a bit technical.) Suppose you are a Bayesian rea ...

  3. 转:Conjugate prior-共轭先验的解释

    Conjugate prior-共轭先验的解释    原文:http://blog.csdn.net/polly_yang/article/details/8250161 一 问题来源: 看PRML第 ...

  4. Gibbs sampling

    In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...

  5. Wishart distribution

    Introduction In statistics, the Wishart distribution is generalization to multiple dimensions of the ...

  6. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  7. PRML读书笔记——2 Probability Distributions

    2.1. Binary Variables 1. Bernoulli distribution, p(x = 1|µ) = µ 2.Binomial distribution + 3.beta dis ...

  8. 关于Beta分布、二项分布与Dirichlet分布、多项分布的关系

    在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现 ...

  9. [zz] 混合高斯模型 Gaussian Mixture Model

    聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...

随机推荐

  1. windows系统命令服务安装卸载

    安装: sc create PDW.CHM.WebAPI binPath= "%~dp0PDW.CHM.WebAPI.exe" start= autosc start PDW.CH ...

  2. VSFTPD配置TLS/SSL

    今天在OSX上配置Coda2 + Xampp的时候,发现FTP老是不连接到服务器上面,导致每次更改了文件都需要使用scp命令上传到服务器.如果一个文件还好,文件和文件夹一多就得使用rp参数全部提交,再 ...

  3. htaccess 增加静态文件缓存和压缩

    增加图片视频等静态文件缓存: <FilesMatch ".(flv|gif|jpg|jpeg|png|ico|swf)$"> Header set Cache-Cont ...

  4. SOS.dll (SOS Debugging Extension)

    SOS.dll (SOS Debugging Extension) lays threads associated with a live thread. The -special option di ...

  5. 装了个干净的win7

    lanny的电脑基本信息 我的电脑 联想 ThinkPad T450s 笔记本电脑 操作系统 Windows 旗舰版 64位 主显卡 集成显卡 IE浏览器 版本号 8.0 基本硬件展示 处理器 英特尔 ...

  6. 史上最全Html与CSS布局技巧

    单列布局水平居中水平居中的页面布局中最为常见的一种布局形式,多出现于标题,以及内容区域的组织形式,下面介绍四种实现水平居中的方法(注:下面各个实例中实现的是child元素的对齐操作,child元素的父 ...

  7. Microsoft Visual Studio 正忙

    简介:Microsoft Visual Studio 正忙,Microsoft Visual Studio 正在等待内部操作完成.如果经常在正常使用的情况下遇到此延迟, 请向Microsoft报告此情 ...

  8. Linux常用指令---find | locate(查找)

    1.locate locate指令和find找寻档案的功能类似,但locate是透过update程序将硬盘中的所有档案和目录资料先建立一个索引数据库,在 执行loacte时直接找该索引,查询速度会较快 ...

  9. SpringMVC类型转换、数据绑定详解[附带源码分析]

    目录 前言 属性编辑器介绍 重要接口和类介绍 部分类和接口测试 源码分析 编写自定义的属性编辑器 总结 参考资料 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那 ...

  10. 浅析java类加载器ClassLoader

    作为一枚java猿,了解类加载器是有必要的,无论是针对面试还是自我学习. 本文从JDK提供的ClassLoader.委托模型以及如何编写自定义的ClassLoader三方面对ClassLoader做一 ...