Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 25832   Accepted: 13481

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
 
主要是学习dinic算法
 #include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <stdio.h>
#include <queue>
#include <vector>
using namespace std;
const int MAX = ;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,cap;
Edge(int v,int w):to(v),cap(w) {}
};
int n,m,np,nc,s,t;
vector<int> g[MAX];
vector<Edge> edge;
int d[MAX],cur[MAX];
void AddEdge(int from,int to,int cap)
{
edge.push_back(Edge(to,cap));
edge.push_back(Edge(from,));
int id = edge.size();
g[from].push_back(id - );
g[to].push_back(id - ); }
bool bfs()
{
memset(d,,sizeof(d));
queue<int> q;
q.push(s);
d[s] = ;
while(!q.empty())
{
int x = q.front();
q.pop();
if(x == t)
return true;
int len = g[x].size();
for(int i = ; i < len; i++)
{
Edge e = edge[ g[x][i] ];
if(d[e.to] == && e.cap > )
{
d[e.to] = d[x] + ;
q.push(e.to);
}
}
}
return false;
}
int dfs(int x, int a)
{
if(x == t || a == )
return a;
int flow = ,f;
for(int& i = cur[x]; i < (int) g[x].size(); i++)
{
Edge& e = edge[ g[x][i] ]; //这里要是引用
if(d[x] + == d[e.to] && (f = dfs(e.to,min(a,e.cap))) > )
{
e.cap -= f;
edge[ g[x][i] ^ ].cap += f;
flow += f;
a -= f;
if(a == )
{
break;
}
}
}
return flow;
}
int MaxFlow()
{
int flow = ;
while(bfs())
{
memset(cur,,sizeof(cur));
flow += dfs(s,INF);
}
return flow;
}
int main()
{
char str[];
int u,v,w;
while(scanf("%d%d%d%d",&n,&np,&nc,&m) != EOF)
{
s = n + ;
t = n + ;
for(int i = ; i < n + ; i++)
g[i].clear();
edge.clear();
for(int i = ; i <= m; i++)
{
scanf("%s",str);
sscanf(str,"%*c%d%*c%d%*c%d",&u,&v,&w);
AddEdge(u,v,w);
}
for(int i = ; i < np; i++)
{
scanf("%s",str);
sscanf(str,"%*c%d%*c%d",&u,&w);
AddEdge(s,u,w);
}
for(int i = ; i < nc; i++)
{
scanf("%s",str);
sscanf(str,"%*c%d%*c%d",&u,&w);
AddEdge(u,t,w);
}
printf("%d\n",MaxFlow());
} return ;
}

POJ1459Power Network(dinic模板)的更多相关文章

  1. POJ 1273 Drainage Ditches (网络流Dinic模板)

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...

  2. hdu 1532 Dinic模板(小白书)

    hdu1532 输入n,m. n条边,m个点,之后给出a到b的容量,求1到m的最大流. 注意:Dinic只能调用一次,因为原理是改变cap的值,如果调用多次一样的,那么第一次会对,其余的都会是0,因为 ...

  3. 最大流算法 ISAP 模板 和 Dinic模板

    ISAP // UVa11248 Frequency Hopping:使用ISAP算法,加优化 // Rujia Liu struct Edge { int from, to, cap, flow; ...

  4. 洛谷P3376【模板】网络最大流  Dinic模板

    之前的Dinic模板照着刘汝佳写的vector然后十分鬼畜跑得奇慢无比,虽然别人这样写也没慢多少但是自己的就是令人捉急. 改成邻接表之后快了三倍,虽然还是比较慢但是自己比较满意了.虽然一开始ecnt从 ...

  5. Power Network POJ - 1459 网络流 DInic 模板

    #include<cstring> #include<cstdio> #define FOR(i,f_start,f_end) for(int i=f_startl;i< ...

  6. HDU1532_Drainage Ditches(网络流/EK模板/Dinic模板(邻接矩阵/前向星))

    Drainage Ditches Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  7. 【网络流#3】hdu 1532 - Dinic模板题

    输入为m,n表示m条边,n个结点 记下来m行,每行三个数,x,y,c表示x到y的边流量最大为c 这道题的模板来自于网络 http://blog.csdn.net/sprintfwater/articl ...

  8. 最大流当前弧优化Dinic模板

    最大流模板: 普通最大流 无向图限制:将无向图的边拆成2条方向相反的边 无源汇点有最小流限制的最大流:理解为水管流量形成循环,每根水管有流量限制,并且流入量等于流出量 有源汇点的最小流限制的最大流 顶 ...

  9. 网络流--最大流dinic模板

    标准的大白书式模板,除了变量名并不一样……在主函数中只需要用到 init 函数.add 函数以及 mf 函数 #include<stdio.h> //差不多要加这么些头文件 #includ ...

随机推荐

  1. JS 浮点数运算丢失精度解决方案

    除法 function accDiv(arg1,arg2){ var t1=0,t2=0,r1,r2; try{t1=arg1.toString().split(".")[1].l ...

  2. Linq中查询List组合相同值数量大于1

     List< select g.Key).ToList();

  3. 【WPF】无边框窗体

    之前写了一个支持尺寸变换的无边框窗体的一个基窗体,代码如下: public class LBaseWindow : Window { /// <summary> /// 基窗体 /// & ...

  4. web页面的回流,认识与避免

    一.什么是回流? 回流是会导致页面重新渲染的一些元素,从而影响性能. 二.哪些因素会导致回流? 1.调整窗口的大小: 2.改变字体,如果用rem  设置了根目录的字体大小,这样就减少了回流的次数: 3 ...

  5. HashMap 中的 entrySet()使用方法 2016.12.28

    package map; import java.util.HashMap; import java.util.Iterator; import java.util.Map.Entry; import ...

  6. C#不同窗体间通信,数据传递

    在一个项目中,很多时候都需要在窗体间进行数据传递和通信,最觉见的是父子窗体之间的数据传递,比如登录ID,各个窗体都需要知道.有很多文章都写了这方面的问题,提出很多优秀的方法,鄙人不才,搜了一些资料之后 ...

  7. Jenkins进阶系列之——02email-ext邮件通知模板

    发现一个很好的邮件通知模板,根据我的需求定制了一些.分享一下. Default Subject: 构建通知:${BUILD_STATUS} - ${PROJECT_NAME} - Build # ${ ...

  8. Unity发送参数给iOSNative并响应

    unity想要给iOS客户端发送通知并相应.语言太苍白直接上代码. unity端创建两个C#文件 1.触发cs这个不用多说,大家估计都懂. using UnityEngine; using Syste ...

  9. 一头扎进EasyUI3

    惯例广告一发,对于初学真,真的很有用www.java1234.com,去试试吧! 一头扎进EasyUI第11讲 .基本下拉组件 <select id="cc" style=& ...

  10. PHP中的日期加减方法示例

    几乎所有从事程序开发的程序员都遇到时间处理问题,PHP开发也一样,幸运的是PHP提供了很多关于日期时间函数.只要经常使用这些函数,搭配使用,日期时间处理上就熟能生巧了. 今天要讲的这个例子,需求是这样 ...