flink - accumulator
读accumlator
JobManager
在job finish的时候会汇总accumulator的值,
newJobStatus match {
case JobStatus.FINISHED =>
try {
val accumulatorResults = executionGraph.getAccumulatorsSerialized()
val result = new SerializedJobExecutionResult(
jobID,
jobInfo.duration,
accumulatorResults)
jobInfo.client ! decorateMessage(JobResultSuccess(result))
}
在client请求accumulation时,
public Map<String, Object> getAccumulators(JobID jobID, ClassLoader loader) throws Exception {
ActorGateway jobManagerGateway = getJobManagerGateway();
Future<Object> response;
try {
response = jobManagerGateway.ask(new RequestAccumulatorResults(jobID), timeout);
} catch (Exception e) {
throw new Exception("Failed to query the job manager gateway for accumulators.", e);
}
消息传到job manager
case message: AccumulatorMessage => handleAccumulatorMessage(message)
private def handleAccumulatorMessage(message: AccumulatorMessage): Unit = {
message match {
case RequestAccumulatorResults(jobID) =>
try {
currentJobs.get(jobID) match {
case Some((graph, jobInfo)) =>
val accumulatorValues = graph.getAccumulatorsSerialized()
sender() ! decorateMessage(AccumulatorResultsFound(jobID, accumulatorValues))
case None =>
archive.forward(message)
}
}
ExecuteGraph
获取accumulator的值
/**
* Gets a serialized accumulator map.
* @return The accumulator map with serialized accumulator values.
* @throws IOException
*/
public Map<String, SerializedValue<Object>> getAccumulatorsSerialized() throws IOException { Map<String, Accumulator<?, ?>> accumulatorMap = aggregateUserAccumulators(); Map<String, SerializedValue<Object>> result = new HashMap<String, SerializedValue<Object>>();
for (Map.Entry<String, Accumulator<?, ?>> entry : accumulatorMap.entrySet()) {
result.put(entry.getKey(), new SerializedValue<Object>(entry.getValue().getLocalValue()));
} return result;
}
execution的accumulator聚合,
/**
* Merges all accumulator results from the tasks previously executed in the Executions.
* @return The accumulator map
*/
public Map<String, Accumulator<?,?>> aggregateUserAccumulators() { Map<String, Accumulator<?, ?>> userAccumulators = new HashMap<String, Accumulator<?, ?>>(); for (ExecutionVertex vertex : getAllExecutionVertices()) {
Map<String, Accumulator<?, ?>> next = vertex.getCurrentExecutionAttempt().getUserAccumulators();
if (next != null) {
AccumulatorHelper.mergeInto(userAccumulators, next);
}
} return userAccumulators;
}
具体merge的逻辑,
public static void mergeInto(Map<String, Accumulator<?, ?>> target, Map<String, Accumulator<?, ?>> toMerge) {
for (Map.Entry<String, Accumulator<?, ?>> otherEntry : toMerge.entrySet()) {
Accumulator<?, ?> ownAccumulator = target.get(otherEntry.getKey());
if (ownAccumulator == null) {
// Create initial counter (copy!)
target.put(otherEntry.getKey(), otherEntry.getValue().clone());
}
else {
// Both should have the same type
AccumulatorHelper.compareAccumulatorTypes(otherEntry.getKey(),
ownAccumulator.getClass(), otherEntry.getValue().getClass());
// Merge target counter with other counter
mergeSingle(ownAccumulator, otherEntry.getValue());
}
}
}
更新accumulator
JobManager
收到task发来的heartbeat,其中附带accumulators
case Heartbeat(instanceID, metricsReport, accumulators) =>
updateAccumulators(accumulators)
根据jobid,更新到ExecutionGraph
private def updateAccumulators(accumulators : Seq[AccumulatorSnapshot]) = {
accumulators foreach {
case accumulatorEvent =>
currentJobs.get(accumulatorEvent.getJobID) match {
case Some((jobGraph, jobInfo)) =>
future {
jobGraph.updateAccumulators(accumulatorEvent)
}(context.dispatcher)
case None =>
// ignore accumulator values for old job
}
}
}
根据ExecutionAttemptID, 更新Execution中
/**
* Updates the accumulators during the runtime of a job. Final accumulator results are transferred
* through the UpdateTaskExecutionState message.
* @param accumulatorSnapshot The serialized flink and user-defined accumulators
*/
public void updateAccumulators(AccumulatorSnapshot accumulatorSnapshot) {
Map<AccumulatorRegistry.Metric, Accumulator<?, ?>> flinkAccumulators;
Map<String, Accumulator<?, ?>> userAccumulators;
try {
flinkAccumulators = accumulatorSnapshot.deserializeFlinkAccumulators();
userAccumulators = accumulatorSnapshot.deserializeUserAccumulators(userClassLoader); ExecutionAttemptID execID = accumulatorSnapshot.getExecutionAttemptID();
Execution execution = currentExecutions.get(execID);
if (execution != null) {
execution.setAccumulators(flinkAccumulators, userAccumulators);
}
}
}
对于execution,只要状态不是结束,就直接更新
/**
* Update accumulators (discarded when the Execution has already been terminated).
* @param flinkAccumulators the flink internal accumulators
* @param userAccumulators the user accumulators
*/
public void setAccumulators(Map<AccumulatorRegistry.Metric, Accumulator<?, ?>> flinkAccumulators,
Map<String, Accumulator<?, ?>> userAccumulators) {
synchronized (accumulatorLock) {
if (!state.isTerminal()) {
this.flinkAccumulators = flinkAccumulators;
this.userAccumulators = userAccumulators;
}
}
}
再看TaskManager如何更新accumulator,并发送heartbeat,
/**
* Sends a heartbeat message to the JobManager (if connected) with the current
* metrics report.
*/
protected def sendHeartbeatToJobManager(): Unit = {
try {
val metricsReport: Array[Byte] = metricRegistryMapper.writeValueAsBytes(metricRegistry) val accumulatorEvents =
scala.collection.mutable.Buffer[AccumulatorSnapshot]() runningTasks foreach {
case (execID, task) =>
val registry = task.getAccumulatorRegistry
val accumulators = registry.getSnapshot
accumulatorEvents.append(accumulators)
} currentJobManager foreach {
jm => jm ! decorateMessage(Heartbeat(instanceID, metricsReport, accumulatorEvents))
}
}
}
可以看到会把每个running task的accumulators放到accumulatorEvents,然后通过Heartbeat消息发出
而task的accumlators是通过,task.getAccumulatorRegistry.getSnapshot得到
看看
AccumulatorRegistry
/**
* Main accumulator registry which encapsulates internal and user-defined accumulators.
*/
public class AccumulatorRegistry { protected static final Logger LOG = LoggerFactory.getLogger(AccumulatorRegistry.class); protected final JobID jobID; //accumulators所属的Job
protected final ExecutionAttemptID taskID; //taskID /* Flink's internal Accumulator values stored for the executing task. */
private final Map<Metric, Accumulator<?, ?>> flinkAccumulators = //内部的Accumulators
new HashMap<Metric, Accumulator<?, ?>>(); /* User-defined Accumulator values stored for the executing task. */
private final Map<String, Accumulator<?, ?>> userAccumulators = new HashMap<>(); //用户定义的Accumulators /* The reporter reference that is handed to the reporting tasks. */
private final ReadWriteReporter reporter; /**
* Creates a snapshot of this accumulator registry.
* @return a serialized accumulator map
*/
public AccumulatorSnapshot getSnapshot() {
try {
return new AccumulatorSnapshot(jobID, taskID, flinkAccumulators, userAccumulators);
} catch (IOException e) {
LOG.warn("Failed to serialize accumulators for task.", e);
return null;
}
}
}
snapshot的逻辑也很简单,
public AccumulatorSnapshot(JobID jobID, ExecutionAttemptID executionAttemptID,
Map<AccumulatorRegistry.Metric, Accumulator<?, ?>> flinkAccumulators,
Map<String, Accumulator<?, ?>> userAccumulators) throws IOException {
this.jobID = jobID;
this.executionAttemptID = executionAttemptID;
this.flinkAccumulators = new SerializedValue<Map<AccumulatorRegistry.Metric, Accumulator<?, ?>>>(flinkAccumulators);
this.userAccumulators = new SerializedValue<Map<String, Accumulator<?, ?>>>(userAccumulators);
}
最后,我们如何将统计数据累加到Accumulator上的?
直接看看Flink内部的Accumulator是如何更新的,都是通过这个reporter来更新的
/**
* Accumulator based reporter for keeping track of internal metrics (e.g. bytes and records in/out)
*/
private static class ReadWriteReporter implements Reporter { private LongCounter numRecordsIn = new LongCounter();
private LongCounter numRecordsOut = new LongCounter();
private LongCounter numBytesIn = new LongCounter();
private LongCounter numBytesOut = new LongCounter(); private ReadWriteReporter(Map<Metric, Accumulator<?,?>> accumulatorMap) {
accumulatorMap.put(Metric.NUM_RECORDS_IN, numRecordsIn);
accumulatorMap.put(Metric.NUM_RECORDS_OUT, numRecordsOut);
accumulatorMap.put(Metric.NUM_BYTES_IN, numBytesIn);
accumulatorMap.put(Metric.NUM_BYTES_OUT, numBytesOut);
} @Override
public void reportNumRecordsIn(long value) {
numRecordsIn.add(value);
} @Override
public void reportNumRecordsOut(long value) {
numRecordsOut.add(value);
} @Override
public void reportNumBytesIn(long value) {
numBytesIn.add(value);
} @Override
public void reportNumBytesOut(long value) {
numBytesOut.add(value);
}
}
何处调用到这个report的接口,
对于in, 在反序列化到record的时候会统计Bytesin和Recordsin
AdaptiveSpanningRecordDeserializer
public DeserializationResult getNextRecord(T target) throws IOException {
// check if we can get a full length;
if (nonSpanningRemaining >= 4) {
int len = this.nonSpanningWrapper.readInt();
if (reporter != null) {
reporter.reportNumBytesIn(len);
}
if (len <= nonSpanningRemaining - 4) {
// we can get a full record from here
target.read(this.nonSpanningWrapper);
if (reporter != null) {
reporter.reportNumRecordsIn(1);
}
所以对于out,反之则序列化的时候写入
SpanningRecordSerializer
@Override
public SerializationResult addRecord(T record) throws IOException {
int len = this.serializationBuffer.length();
this.lengthBuffer.putInt(0, len); if (reporter != null) {
reporter.reportNumBytesOut(len);
reporter.reportNumRecordsOut(1);
}
使用accumulator时,需要首先extends RichFunction by callinggetRuntimeContext().addAccumulator
flink - accumulator的更多相关文章
- Flink DataSet API Programming Guide
https://ci.apache.org/projects/flink/flink-docs-release-0.10/apis/programming_guide.html Example ...
- Flink Program Guide (1) -- 基本API概念(Basic API Concepts -- For Java)
false false false false EN-US ZH-CN X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-n ...
- Apache Flink Quickstart
Apache Flink 是新一代的基于 Kappa 架构的流处理框架,近期底层部署结构基于 FLIP-6 做了大规模的调整,我们来看一下在新的版本(1.6-SNAPSHOT)下怎样从源码快速编译执行 ...
- Flink学习(三)状态机制于容错机制,State与CheckPoint
摘自Apache官网 一.State的基本概念 什么叫State?搜了一把叫做状态机制.可以用作以下用途.为了保证 at least once, exactly once,Flink引入了State和 ...
- Flink – WindowedStream
在WindowedStream上可以执行,如reduce,aggregate,min,max等操作 关键是要理解windowOperator对KVState的运用,因为window是用它来存储wind ...
- Flink 中的kafka何时commit?
https://ci.apache.org/projects/flink/flink-docs-release-1.6/internals/stream_checkpointing.html @Ove ...
- Flink 部署文档
Flink 部署文档 1 先决条件 2 下载 Flink 二进制文件 3 配置 Flink 3.1 flink-conf.yaml 3.2 slaves 4 将配置好的 Flink 分发到其他节点 5 ...
- 聊聊flink的Async I/O
// This example implements the asynchronous request and callback with Futures that have the // inter ...
- Flink学习笔记:Flink API 通用基本概念
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...
随机推荐
- phpcms筛选功能
phpcms论坛的看到的-----做筛选功能-----自定义函数 <?php /** * extention.func.php 用户自定义函数库 * * @copyright (C) 2005- ...
- C++primer学习笔记(一)——Chapter 3
3.1 Namespace using Declarations 1.因为C++里有名字空间的定义,例如我们使用cin的时候必须写成std::cin,如果就用一次还是可以接受的,但是如果一直都这样,那 ...
- 关于flume中的几个疑惑
文章发自http://www.cnblogs.com/hark0623/p/4205756.html 转载请注明 flume越用越有一些疑惑,这个月中按计划是要阅读flume源码的,我希望能解决我的 ...
- LoadRunner中多值关联的3种处理方式
需求:通过关联取得的ParamName参数可能存在多个值,需要对每个ParamName参数值进行处理 脚本:可通过3种不同的实现方式,将每个参数值作为HTTP请求内容发出 web_reg_save_ ...
- RequiredFieldValidator 控件 CompareValidator 控件
RequiredFieldValidator 控件 验证关联控件非空 ControlToValidate 属性用来关联被验证控件 ErrorMEssage 触发控件后显示的错误信息 CompareVa ...
- SU suacor命令学习
前段时间事情忙,今天才更新.
- git将本地仓库上传到远程仓库
在已有的Git库中搭建新库,并且将本地的git仓库,上传到远程服务器的git库中,从而开始一个新的项目 首先,在本地新建文件夹abc,进入到abc里面,然后git init.这样就在本地初始化了一个g ...
- 水题 Codeforces Round #296 (Div. 2) A. Playing with Paper
题目传送门 /* 水题 a或b成倍的减 */ #include <cstdio> #include <iostream> #include <algorithm> ...
- 模拟 2013年山东省赛 J Contest Print Server
题目传送门 /* 题意:每支队伍需求打印机打印n张纸,当打印纸数累计到s时,打印机崩溃,打印出当前打印的纸数,s更新为(s*x+y)%mod 累计数清空为0,重新累计 模拟简单题:关键看懂题意 注意: ...
- protected(C# 参考)
protected 关键字是一个成员访问修饰符.受保护成员在它的类中可访问并且可由派生类访问.有关 protected 与其他访问修饰符的比较,请参见可访问性级别. 仅当访问通过派生类类型发生时,基类 ...