R语言数据类型
R语言数据类型【转!!】Zhao-Pace https://www.cnblogs.com/zhao441354231/p/5970544.html
R语言用来存储数据的对象包括: 向量, 因子, 数组, 矩阵, 数据框, 时间序列(ts)以及列表, 下面讲意义介绍.
1. 向量(一维数据): 只能存放同一类型的数据
语法: c(data1, data2, ...), 访问的时候下标从1开始(和Matlab相同); 向量里面只能存放相同类型的数据.
> x <- c(1,5,8,9,1,2,5)
> x
[1] 1 5 8 9 1 2 5
> y <- c(1,"zhao") # 这里面有integer和字符串, 整数自动转化成了字符
> y[1]
[1] "1"
访问:
> x[-(1:2)] # 不显示第1,2个元素
[1] 8 9 1 2 5
> x[2:4] # 访问第2,3,4个元素
[1] 5 8 9
2. 因子(factors): 提供了一个处理分类数据的更简洁的方式
因子在整个计算过程中不再作为数值, 而是作为一个"符号"而已.
factor(x=character(), levels, labels=levels, exclude=NA, ordered=is.ordered(x), nmax=NA)
x: 一个数据向量, 它将被转换成为因子;
levels: 用来指定因子可能出现的水平(默认也就是向量x里面互异的值, sort(unique(x)));它是一个字符向量(即每个元素是单个字符, 组成的一个向量), 下面的变量b就是一个字符向量(可以使用as.character()函数来生成).
labels: 用来指定水平的名字;
> a <- c(6,1,3,0)
> b = as.character(a)
> b
[1] "6" "1" "3" "0"
exclude: 一个值向量, 表示从向量x里面剔除的水平值.
nmax: 水平数目的上界.

> factor(1:3)
[1] 1 2 3
Levels: 1 2 3
> factor(1:3, levels=1:6)
[1] 1 2 3
Levels: 1 2 3 4 5 6
> factor(1:6, exclude = 2)
[1] 1 <NA> 3 4 5 6
Levels: 1 3 4 5 6

一般因子(factor) VS 有序因子(ordered factor)
因子用来存放变量或者有序变量, 这类变量不能用来计算, 而只能用来分类或者计数. 一般因子表示分类变量, 有序因子用来表示有序变量.
创建一个因子:

> colour <- c('G', 'G', 'R', 'Y', 'G', 'Y', 'Y', 'R', 'Y')
> col <- factor(colour) #生成因子
#labels里面的内容代替对应位置处的levels内容
> col1 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('Green', 'Red', 'Yellow'))
> levels(col)
[1] "G" "R" "Y"
> levels(col1)
[1] "Green" "Red" "Yellow"
> col2 <- factor(colour, levels = c('G', 'R', 'Y'), labels = c('1', '2', '3'))
> levels(col2)
[1] "1" "2" "3"
> col_vec <- as.vector(col2)
> class(col_vec)
[1] "character"
> col2
[1] 1 1 2 3 1 3 3 2 3
Levels: 1 2 3
> col_num <- as.numeric(col2)
> col_num
[1] 1 1 2 3 1 3 3 2 3
> col3 <- factor(colour, levels = c('G', 'R')) #levels里面没有'B',导致col3里面的'B'变成了<NA>
> col3
[1] G G R <NA> G <NA> <NA> R <NA>
Levels: G R
> colour
[1] "G" "G" "R" "Y" "G" "Y" "Y" "R" "Y"

创建一个有序因子:
> score <- c('A', 'B', 'A', 'C', 'B')
> score1 <- ordered(score, levels = c('C', 'B', 'A'));
> score1
[1] A B A C B
Levels: C < B < A
3. 矩阵(matrix, 二维数据): 只能存放同一类型
语法: matrix(data, nrow = , ncol = , byrow = F) -- byrow = F表示按列来存放数据(默认), byrow=T表示按行存放数据;
> xx = matrix(1:10, 2, 5)
> xx
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
4. 数组(大于等于三维的数据): 只能存放同一类型
语法: array(data, dim) -- data: 必须是同一类型的数据; dim: 各维的维度组成的向量;(怎么感觉和matlab里面的reshape函数那么像)
> a = array(1:10,c(2,5))
> a
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
5. 数据框(data frame)
数据框是一种矩阵形式排列的数据(类似于excel表格), 但是和矩阵不同的是, 它的每一列可以是不同的数据类型(还是和excel很像).
语法: data.frame(data1, data2,...) -- data1,...为每列的数据.

> name <- c("Mr A", "Mr B", "Mr C")
> group <- rep(1,3)
> scort <- c(58,15,41)
> df <- data.frame(name, group, scort)
> df
name group scort
1 Mr A 1 58
2 Mr B 1 15
3 Mr C 1 41

数据访问:

> df$name
[1] Mr A Mr B Mr C
Levels: Mr A Mr B Mr C
> df[1]
name
1 Mr A
2 Mr B
3 Mr C

6. 列表(list): 可以存放不同类型的数据
语法: list(name1=component1, name2=component2, ...)

> xx <- rep(1:2, 3:4)
> yy <- c('Mr A', 'Mr B', 'Mr C', 'Mr D', 'Mr E', 'Mr D', 'Mr F')
> zz <- 'discussion group'
> name.list <- list(group = xx, name = yy, decription = zz)
> name.list
$group
[1] 1 1 1 2 2 2 2 $name
[1] "Mr A" "Mr B" "Mr C" "Mr D" "Mr E" "Mr D" "Mr F" $decription
[1] "discussion group"

R语言数据类型的更多相关文章
- R语言 数据类型
R语言数据类型 通常,在使用任何编程语言进行编程时,您需要使用各种变量来存储各种信息. 变量只是保留值的存储位置. 这意味着,当你创建一个变量,你必须在内存中保留一些空间来存储它们. 您可能想存储各种 ...
- R语言数据类型与数据结构
一.数据类型 5种 1.character 字符 2.numeric 数值 3.integer 整数 一般数字的存储会默认为数值类型,如果要强调是整数,需要在变量值后面加上 L. x <- 5L ...
- R语言-数据类型与运算符
一.在线安装包 install.packages(package_name) 二.查看变量 ls() 三.删除变量 rm() 四.变量类型 元数据类型:字符,整形,数字,虚数,BOOL 向量:vec= ...
- R语言入门二
一.R语言应知常用函数 1.getwd() 函数:获取工作目录(同eclipse设置workspace类似),直接在R软件中使用,如下图: 2.setwd(dir=”工作目录”) 函数:设置R软件RS ...
- R语言编程艺术# 数据类型向量(vector)
R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...
- R语言编程艺术#01#数据类型向量(vector)
R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...
- 【R语言入门】R语言中的变量与基本数据类型
说明 在前一篇中,我们介绍了 R 语言和 R Studio 的安装,并简单的介绍了一个示例,接下来让我们由浅入深的学习 R 语言的相关知识. 本篇将主要介绍 R 语言的基本操作.变量和几种基本数据类型 ...
- R语言六种数据类型
1 向量 1.1 定义向量 向量使用c来赋值,向量中不能混合不同类型的数据 x<-c(2,3,7,6,8) 数值型num y<-("one","two&qu ...
- R语言作为BI中ETL的工具
R语言作为BI中ETL的工具,增删改 R语言提供了强大的R_package与各种数据库进行数据交互. 外加其强大数据变换清洗函数,为ETL提供一条方便快捷的道路. RODBC ROracal RMys ...
随机推荐
- NPOI的基本用法,导出Excel
void DownloadForAccountIndex(IReadOnlyList<AccountInfoView> list) { NPOI.HSSF.UserModel.HSSFWo ...
- Bitmap的使用习惯——及时释放Bitmap占用的内存
当Bitmap不再需要使用时,我们应该回收它占用的内存,如果我们直接把指向bitmap的引用置null的话,这样bitmap还是会存在内存中,直到GC机制起作用时,才可能会把这个bitmap回收.这样 ...
- Netty 客户端断线重连
client 关闭后会执行 finally 代码块,可以在这里可以进行重连操作 public class NettyClient implements Runnable { private final ...
- dp-棋盘形dp
luogu类似题很多的. P1006 传纸条 有不少做法.这里提一个三维做法. 找两条路,可以模拟为有两个人同从(1,1)走到(m,n),走不同的路. 设有k步,则显然2<=k<m+n ( ...
- KDJ计算公式
计算方法编辑KDJ的计算比较复杂,首先要计算周期(n日.n周等)的RSV值,即未成熟随机指标值,然后再计算K值.D值.J值等.以n日KDJ数值的计算为例,其计算公式为n日RSV=(Cn-Ln)/(Hn ...
- Sql知识点总结
一.数据库对象:表(table) 视图(view) 序列(sequence) 索引(index) 同义词(synonym) 视图(view) : 存储起来的 select 语句 create view ...
- Java集合的总结
参考博客: http://www.jianshu.com/p/63e76826e852 http://www.cnblogs.com/LittleHann/p/3690187.html https:/ ...
- python爬虫学习笔记
爬虫的分类 1.通用爬虫:通用爬虫是搜索引擎(Baidu.Google.Yahoo等)“抓取系统”的重要组成部分.主要目的是将互联网上的网页下载到本地,形成一个互联网内容的镜像备份. 简单来讲就是尽可 ...
- fiddler和手机连接抓包实现
很好用的抓包工具,不需要手机usb连接就可以抓包,查找bug超方便 实现方法: 借鉴跳转 手机版本:andriod 7.1.1 上面的方法的基础上遇到的问题: 在浏览器下载下来证书后始终无法打开(或许 ...
- Linux基础整理
命令 说明 chsh 查看和修改当前登录的Shell export 查看和设置Shell环境变量 read 读取从键盘或文件输入的数据 expr 四则远算和字符串运算 tmux 一个窗口操作多个会话 ...