pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)
数据介绍
先随机生成一组数据:
import pandas as pd
import numpy as np state = ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada']
year = [2000, 2001, 2002, 2003, 2004]
pop = [1.3, 1.4, 1.6, 4.5, 2.7]
frame = pd.DataFrame({'state': state, 'year': year, 'pop': pop})
print(frame)
结果:
pop state year
0 1.3 Ohio 2000
1 1.4 Ohio 2001
2 1.6 Ohio 2002
3 4.5 Nevada 2003
4 2.7 Nevada 2004
1. []切片方法
# 行选择
print(frame[1:3]) # 列选择
print(frame[['year', 'pop']]) # 区块选择
print(frame[:3][['state', 'year']])
结果:
pop state year
1 1.4 Ohio 2001
2 1.6 Ohio 2002
year pop
0 2000 1.3
1 2001 1.4
2 2002 1.6
3 2003 4.5
4 2004 2.7
state year
0 Ohio 2000
1 Ohio 2001
2 Ohio 2002
2.loc(按照索引来进行行列选择)
# 行选择
print(frame.loc[1:3]) # 区块选择
print(frame.loc[1:3, ['year', 'pop']])
结果:
pop state year
1 1.4 Ohio 2001
2 1.6 Ohio 2002
3 4.5 Nevada 2003
year pop
1 2001 1.4
2 2002 1.6
3 2003 4.5
注意:loc与[]的不同之处在于会把3也选择进去,而使用[]是不包含的。
In [15]: data_fecha.head()
Out[15]:
rnd_1 rnd_2 rnd_3
fecha
2012-04-10 8 17 12
2012-04-11 1 16 3
2012-04-12 7 6 1
2012-04-13 2 16 7
2012-04-14 4 17 7 In [16]: # 生成两个特定日期
...: fecha_1 = dt.datetime(2013, 4, 14)
...: fecha_2 = dt.datetime(2013, 4, 18)
...:
...: # 生成切片数据
...: data_fecha.loc[fecha_1: fecha_2]
Out[16]:
rnd_1 rnd_2 rnd_3
fecha
2013-04-14 17 10 5
2013-04-15 14 4 9
2013-04-16 1 2 18
2013-04-17 9 15 1
2013-04-18 16 7 17
建议:使用loc而尽量少使用[],因为loc在对DataFrame进行重新赋值操作时会避免chained indexing问题,使用[]时编译器很可能会给出SettingWithCopy的警告。
3.iloc
如果说loc是按照索引(index)的值来选取的话,那么iloc就是按照索引的位置来进行选取。iloc不关心索引的具体值是多少,只关心位置是多少,所以使用iloc时方括号中只能使用数值。
# 行选择
print(frame.iloc[1:3]) # 列选择
print(frame.iloc[:, [1, 2]]) # 区块选择
print(frame.iloc[[1, 3, 4], [0, 2]])
结果:
pop state year
1 1.4 Ohio 2001
2 1.6 Ohio 2002
state year
0 Ohio 2000
1 Ohio 2001
2 Ohio 2002
3 Nevada 2003
4 Nevada 2004
pop year
1 1.4 2001
3 4.5 2003
4 2.7 2004
4.at
at的使用方法与loc类似,但是比loc有更快的访问数据的速度,而且只能访问单个元素,不能访问多个元素。
import time
start = time.clock()
frame.at[1,'year']
Out[8]: 2001
end = time.clock()
end - start
Out[11]: 30.75638200200791
start = time.clock()
frame.loc[1,'year']
Out[13]: 2001
end = time.clock()
end - start
Out[15]: 29.014473024534
5.iat
iat对于iloc的关系就像at对于loc的关系,是一种更快的基于索引位置的选择方法,同at一样只能访问单个元素。
In [15]:frame.iat[1,2]
Out[16]: 2001
6.ix
以上几种方法都要求查询的秩在索引中,或者位置不超过长度范围,而ix允许你得到不在DataFrame索引中的数据。
In [28]: date_1 = dt.datetime(2013, 1, 10, 8, 30)
...: date_2 = dt.datetime(2013, 1, 13, 4, 20)
...:
...: # 生成切片数据
...: data_fecha.ix[date_1: date_2]
Out[28]:
rnd_1 rnd_2 rnd_3
fecha
2013-01-11 19 17 19
2013-01-12 10 9 17
2013-01-13 15 3 10
2013年1月10号并没有被选择进去,因为这个时间点被看作为0点0分,比8点30分要早一些。
pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)的更多相关文章
- pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)
pandas DataFrame的增删查改总结系列文章: pandas DaFrame的创建方法 pandas DataFrame的查询方法 pandas DataFrame行或列的删除方法 pand ...
- pandas中DataFrame对象to_csv()方法中的encoding参数
当使用pd.read_csv()方法读取csv格式文件的时候,常常会因为csv文件中带有中文字符而产生字符编码错误,造成读取文件错误,在这个时候,我们可以尝试将pd.read_csv()函数的enco ...
- pandas中DataFrame的ix,loc,iloc索引方式的异同
pandas中DataFrame的ix,loc,iloc索引方式的异同 1.loc: 按照标签索引,范围包括start和end 2.iloc: 在位置上进行索引,不包括end 3.ix: 先在inde ...
- Spark与Pandas中DataFrame对比
Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...
- Spark与Pandas中DataFrame对比(详细)
Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制paral ...
- Pandas中DataFrame修改列名
Pandas中DataFrame修改列名:使用 rename df = pd.read_csv('I:/Papers/consumer/codeandpaper/TmallData/result01- ...
- pandas中DataFrame使用
切片选择 #显示第一行数据print(df.head(1)) #显示倒数三行数据 print(df.tail(3)) loc df.loc[row_index,col_index] 注意loc是根 ...
- pandas中DataFrame和Series的数据去重
在SQL语言中去重是一件相当简单的事情,面对一个表(也可以称之为DataFrame)我们对数据进行去重只需要GROUP BY 就好. select custId,applyNo from tmp.on ...
- pandas中DataFrame重置设置索引
在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as n ...
随机推荐
- SVN clean失败解决方法
一.问题描述 1.svn 更新或者提交时,报错:svn cleanup failed–previous operation has not finished; run cleanup if it wa ...
- webbrowser设置为相应的IE版本
注册表路径: HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\Microsoft\Internet Explorer\Main\FeatureControl\FEATU ...
- day 25-1 接口类、抽象类、多态
# 接口类:python 原生不支持# 抽象类:python 原生支持的 接口类 首先我们来看一个支付接口的简单例子 from abc import abstractmethod,ABCMeta #我 ...
- CSS字体渐变 & 隐藏浏览器滚动条 & grid布局(转载)
字体渐变 https://www.zhangxinxu.com/study/201104/css3-text-gradient-2.html 隐藏浏览器滚动条 https://blog.csdn. ...
- 只有try和finally,没有catch
因为没有catch捕获异常,所以异常发生时,会将异常抛出,导致程序中止:在抛出之前会执行finally中的代码. 用于无法捕获处理异常,需要在程序结束之前进行善后处理的场景
- JavaWeb之html
html :Hyper Text Markup Language 超文本标记语言 超文本:比文本功能更加强大 标记语言:通过一组标签对内容进行描述的一门语言 html书写规则: 文件的后缀名:.htm ...
- 百度杯”CTF比赛 2017 二月场 没错!就是文件包含漏洞。
题目源码: 文件包含漏洞的话,看一下 你么可以使用php://input 伪协议,执行代码(参考了大佬WP)这里使用了POSTMAN, 目录下还有一个dle345aae.php文件,呢么用cat命令打 ...
- Java 入门
Java 入门 入门书籍 Java相关书籍: <Java编程思想> 算是比较经典和全面的书籍; 10章可以快速过一下,都是基本语法,不需要花太多时间. 中后段的一些章节,类型信息.泛型.容 ...
- windows 环境下切换 python2 与 pythone3 以及常用命令
windows 环境下切换运行时的 python2 与 pythone3 当需要 python2 时执行:py -2 当需要 python3 时执行:py -3 windows下通过cmd切换pyth ...
- 帆软认证BI工程师FCBA-部分题目
1.安装32位系统的FineBI,最多只能支持2G内存. 正确 错误 2.Spider数据引擎中适合内存化的表通常为数据量小且更新频率较低的表. 正确 错误 3.Spider数据引擎支持跨数据源进行数 ...