题目:

1079 中国剩余定理

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注

一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。

Input

第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)

第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)

Output

输出符合条件的最小的K。数据中所有K均小于10^9。

Input示例

3

2 1

3 2

5 3

Output示例

23

分析:

若 m1, m2, m3…mi 是两两互素的正整数, 则同余方程组:

x = a1 (mod m1)

x = a2 (mod m2)



x = an (mod mn)

有模 M = m1 * m2 * m3 * m4 … mn 的唯一解。

令 Mi = M / mi;

易得 (Mi, mi) = 1 , 所以有 MiPi = 1(mod mi)

则 方程组的解 x=∑ni=1ai*Mi*Pi

实现:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int maxn = 100;

LL a[maxn], m[maxn];

void Exgcd(LL a, LL b, LL& d, LL& x, LL& y) {
if(b == 0) { d = a, x = 1, y = 0; }
else {
Exgcd(b, a%b, d, y, x);
y -= x * (a/b);
}
} LL China(int n, LL* a, LL* m) {
LL M = 1, d, y, x = 0;
for(int i = 0; i < n; ++i) M *= m[i];
for(int i = 0; i < n; ++i) {
LL w = M / m[i];
Exgcd(m[i], w, d, d, y);
x = (x + y*w*a[i]) % M;
}
return (x + M) % M;
} int main() {
int n;
while(cin >> n) {
for(int i = 0; i < n; ++i) {
cin >> m[i] >> a[i];
}
cout << China(n, a, m) <<endl;
}
}

51nod--1079 中国剩余定理的更多相关文章

  1. (数论)51NOD 1079 中国剩余定理

    一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % 2 = 1, K % 3 = 2, K % 5 = 3.符合条件的最小的K = 23.   Input 第1行:1个数 ...

  2. 51NOD——T 1079 中国剩余定理

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1079 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难 ...

  3. 51 nod 1079 中国剩余定理

    1079 中国剩余定理 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K.例如,K % ...

  4. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  5. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  6. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  7. poj1006中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Des ...

  8. (伪)再扩展中国剩余定理(洛谷P4774 [NOI2018]屠龙勇士)(中国剩余定理,扩展欧几里德,multiset)

    前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个 ...

  9. 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)

    洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...

  10. 洛谷P3868 [TJOI2009]猜数字(中国剩余定理,扩展欧几里德)

    洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[ ...

随机推荐

  1. You earned your Program Management Professional (PgMP)® Credential

    You earned your Program Management Professional (PgMP)® Credential. pasting

  2. Django缓存机制--rest_framework中节流源码使用的就是django提供的缓存api

    一.配置缓存   https://www.jb51.net/article/124434.htm 二.缓存全站.页面.局部   三.自我控制的简单缓存API API 接口为:django.core.c ...

  3. Linux centos7.5操作系统的安装

    安装centos7.5 1.1 新建虚拟机 1.2 选择客户机系统和版本 1.3 更改虚拟机名称和创建地址.   1.4 选择网络类型 1.5 自定义硬件,选择添加centos7.5镜像 1.6 开机 ...

  4. SpringMVC学习手册(三)------EL和JSTL(上)

    1.含义 EL:       Expression Language , 表达式语言 JSTL:   Java Server Pages Standard Tag Library, JSP标准标签库  ...

  5. Go语言协程

    协程的特点 1.该任务的业务代码主动要求切换,即主动让出执行权限 2.发生了IO,导致执行阻塞(使用channel让协程阻塞) 与线程本质的不同 C#.java中我们执行多个线程,是通过时间片切换来进 ...

  6. BZOJ2527[Poi2011]Meteors——整体二分+树状数组

    题目描述 Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby galaxy. The ...

  7. Luogu5283 十二省联考2019异或粽子(trie/可持久化trie+堆)

    做前缀异或和,用堆维护一个五元组(x,l,r,p,v),x为区间右端点的值,l~r为区间左端点的范围,p为x在l~r中最大异或和的位置,v为该最大异或和,每次从堆中取出v最大的元素,以p为界将其切成两 ...

  8. 深入理解JVM(3)——类加载机制

    1.类加载时机 类的整个生命周期包括了:加载( Loading ).验证( Verification ).准备( Preparation ).解析( Resolution ).初始化( Initial ...

  9. 2733: [HNOI2012]永无乡 线段树合并

    题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...

  10. 越光后端开发——ygapi(1.新建项目ygapi、新建MySQL数据库yg、项目连接数据库)

    1.新建MySQL数据库 show databases;//查看已经有的数据库 create database yg; 2.新建项目ygapi 1.使用pycharm新建django项目取名ygapi ...