[cf contest246] E - Blood Cousins Return
[cf contest246] E - Blood Cousins Return
time limit per test3 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Polycarpus got hold of a family tree. The found tree describes the family relations of n people, numbered from 1 to n. Every person in this tree has at most one direct ancestor. Also, each person in the tree has a name, the names are not necessarily unique.
We call the man with a number a a 1-ancestor of the man with a number b, if the man with a number a is a direct ancestor of the man with a number b.
We call the man with a number a a k-ancestor (k > 1) of the man with a number b, if the man with a number b has a 1-ancestor, and the man with a number a is a (k - 1)-ancestor of the 1-ancestor of the man with a number b.
In the tree the family ties do not form cycles. In other words there isn't a person who is his own direct or indirect ancestor (that is, who is an x-ancestor of himself, for some x, x > 0).
We call a man with a number a the k-son of the man with a number b, if the man with a number b is a k-ancestor of the man with a number a.
Polycarpus is very much interested in how many sons and which sons each person has. He took a piece of paper and wrote m pairs of numbers vi, ki. Help him to learn for each pair vi, ki the number of distinct names among all names of the ki-sons of the man with number vi.
InputThe first line of the input contains a single integer n (1 ≤ n ≤ 105) — the number of people in the tree. Next n lines contain the description of people in the tree. The i-th line contains space-separated string si and integer ri (0 ≤ ri ≤ n), where si is the name of the man with a number i, and ri is either the number of the direct ancestor of the man with a number i or 0, if the man with a number i has no direct ancestor.
The next line contains a single integer m (1 ≤ m ≤ 105) — the number of Polycarpus's records. Next m lines contain space-separated pairs of integers. The i-th line contains integers vi, ki (1 ≤ vi, ki ≤ n).
It is guaranteed that the family relationships do not form cycles. The names of all people are non-empty strings, consisting of no more than 20 lowercase English letters.
OutputPrint m whitespace-separated integers — the answers to Polycarpus's records. Print the answers to the records in the order, in which the records occur in the input.
Examplesinput6pasha 0gerald 1gerald 1valera 2igor 3olesya 151 11 21 33 16 1output22010input6valera 0valera 1valera 1gerald 0valera 4kolya 471 11 22 12 24 15 16 1output1000200
题目大意:给定一棵树,给一些询问询问一个节点x子树里,与x距离为k(k不同)节点的值有多少种。
这里介绍一下dsu on tree这种东西。
这个方法是一种启发式的合并,一般与树剖合用。
思想是暴力思想的优化,与莫队思想类似。而时间复杂度的证明与轻重链(树链剖分)有关。
我先留坑吧。先放一个piano写的贴子。piano
声明一下dsu是一个离线算法,总复杂度一般是O(nlogn)的。要么就乘上一个统计的复杂度。
对于这题,我们主要思考如何统计?
用n个set维护一下就好了。复杂度是O(nlog2n)的。
code:
#include <cstdio> #include <cstring> #include <algorithm> #include <map> #include <set> #include <string> #include <vector> using namespace std; ; int n,q,co[N]; int tot,lnk[N],nxt[N],son[N]; int fa[N],dep[N],siz[N],got[N]; int skp,cnt[N],ans[N]; map <string,int> rel; set <int> ase[N]; vector <pair <int,int> > a[N]; void add (int x,int y) { nxt[++tot]=lnk[x],lnk[x]=tot; son[tot]=y; } namespace tcd { void dfs_ppw (int x,int p) { fa[x]=p,dep[x]=dep[p]+; siz[x]=,got[x]=; for (int j=lnk[x]; j; j=nxt[j]) { if (son[j]==p) continue; dfs_ppw(son[j],x); siz[x]+=siz[son[j]]; if (siz[son[j]]>siz[got[x]]) got[x]=son[j]; } } void calc (int x,int v) { &&x>) ase[dep[x]].insert(co[x]); else ase[dep[x]].erase(co[x]); for (int j=lnk[x]; j; j=nxt[j]) { if (son[j]==fa[x]||son[j]==skp) continue; calc(son[j],v); } } void main (int x,bool f) { for (int j=lnk[x]; j; j=nxt[j]) { if (son[j]==fa[x]||son[j]==got[x]) continue; main(son[j],); } ),skp=got[x]; calc(x,),skp=; ,c; i<a[x].size(); ++i) { ) ans[a[x][i].first]=; else ans[a[x][i].first]=ase[dep[x]+a[x][i].second].size(); } ); } } int main () { ; ]; scanf("%d",&n); ; i<=n+; ++i) { scanf("%s%d",s,&x),++x; if (!rel[s]) rel[s]=++k; co[i]=rel[s]; add(x,i); } scanf("%d",&q); ; i<=q; ++i) { scanf("%d%d",&x,&y),++x; a[x].push_back(make_pair(i,y)); } dep[]=,siz[]=; tcd::dfs_ppw(,); tcd::main(,); ; i<=q; ++i) { printf("%d\n",ans[i]); } ; }
[cf contest246] E - Blood Cousins Return的更多相关文章
- Codeforces 246E - Blood Cousins Return (树上启发式合并)
246E - Blood Cousins Return 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor,每个节点有名字,名字不唯一.多次查询,给出 u k ...
- Codeforces 246E Blood Cousins Return(树上启发式合并)
题目链接 Blood Cousins Return #include <bits/stdc++.h> using namespace std; #define rep(i, a, b) f ...
- CF 246E. Blood Cousins Return [dsu on tree STL]
题意: 一个森林,求k级后代中多少种不同的权值 用set维护每个深度出现的权值 一开始一直在想删除怎么办,后来发现因为当前全局维护的东西里都是当前子树里的,如果要删除那么当前一定是轻儿子,直接清空se ...
- codeforces246E Blood Cousins Return
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 热身训练1 Blood Cousins Return
点此看题 简要题面: 一棵树上有n个节点,每个节点有对应的名字(名字可重复). 每次询问,求深度比$vi$多$ki$的$vi$的儿子中,有多少种名字 分析: Step1: 我们可以懂$DFS$轻松找到 ...
- CF 208E - Blood Cousins dfs序+倍增
208E - Blood Cousins 题目:给出一棵树,问与节点v的第k个祖先相同的节点数有多少个. 分析: 寻找节点v的第k个祖先,这不就是qtree2简化版吗,但是怎么统计该祖先拥有多少个深度 ...
- Codeforces 208E - Blood Cousins(树上启发式合并)
208E - Blood Cousins 题意 给出一棵家谱树,定义从 u 点向上走 k 步到达的节点为 u 的 k-ancestor.多次查询,给出 u k,问有多少个与 u 具有相同 k-ance ...
- CF208E Blood Cousins
Blood Cousins 题目描述 小C喜欢研究族谱,这一天小C拿到了一整张族谱. 小C先要定义一下k-祖先. x的1-祖先指的是x的父亲 x的k-祖先指的是x的(k-1)-祖先的父亲 小C接下来要 ...
- CF 208E. Blood Cousins [dsu on tree 倍增]
题意:给出一个森林,求和一个点有相同k级祖先的点有多少 倍增求父亲然后和上题一样还不用哈希了... #include <iostream> #include <cstdio> ...
随机推荐
- liunx驱动----点亮LED
自动挂接根文件系统(直接从NFS启动) 修改uboot命令行 把 bootargs=noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0 ...
- PAT (Basic Level) Practice (中文)1004 成绩排名 (20 分)
题目链接:https://pintia.cn/problem-sets/994805260223102976/problems/994805321640296448 #include <iost ...
- 五一培训 DAY1
DAY1 枚举 例题1 题解: 例题2 题解: 例题3 题解: vis[ ]判断是否为素数,pri[ ]储存素数 例题4 题解: 例题5 题解: PS: i < 1<<n ...
- jdbc之工具类DBUtil的使用
首先回顾一下jdbc的使用方法: 1. 注册驱动 2. 建立连接 3. 建立statement 4. 定义sql语句 5. 执行sql语句,如果执行的是查询需遍历结果集 6. 关闭连接 其中建立连接和 ...
- 编译原理 #02# 简易递归下降分析程序(js实现)
// 实验存档 截图: 代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"&g ...
- EDK II之SMM/SMI
SMM:System Managerment Mode SMM有自己的smm core以及dispatcher(可以简单的把smm core跟dxe core看成是平行的存在),smm有自己的运行空间 ...
- python实现简单算法
#选择n^2def selectSort(li): for i in range(len(li)-1): minLoc = i for j in range(i+1,len(li)): if li[j ...
- 算法(第四版)C# 习题题解——2.4
写在前面 整个项目都托管在了 Github 上:https://github.com/ikesnowy/Algorithms-4th-Edition-in-Csharp 查找更方便的版本见:https ...
- 【Alpha】Scrum Meeting 9
目录 前言 任务分配 燃尽图 会议照片 签入记录 困难 前言 第9次会议于4月13日20:00在一公寓3楼召开. 交流确认了任务进度,对下一阶段任务进行分配.时长20min. 任务分配 姓名 当前阶段 ...
- python3中argparse模块
1.定义:argparse是python标准库里面用来处理命令行参数的库 2.命令行参数分为位置参数和选项参数: 位置参数就是程序根据该参数出现的位置来确定的 ...