基于我们在线性代数中学习过的知识,我们知道解线性方程组本质上就是Gauss消元,也就是基于增广矩阵A的矩阵初等变换。关于数学层面的内容这里不做过多的介绍,这里的侧重点是从数值计算的角度来看这些常见的问题。

那么基于Gauss消元的算法,我们将会很好理解如下的Matlab代码:

for j = 1:n-1

for i = j+1 : n

mult = A(i,j)/A(j,j);

A(i,:) = A(i,:) – mult*A(j,:);    %这里改写成A(i , j:n) = A(i,j:n) – mult*A(j,j:n)效率更高

b(i) = b(i) – mult*b(j);         %这里的b是增光矩阵的最右一列向量,也就是方程组右侧常数部分

end;

end;

这我们能够明显的看到,由于这里计算mult的时候涉及除法,所以无法处理A(j,j)=0的情况。

关于这种一般化的Gauss消元,进行如下的时间复杂度的分析,这里我们以进行多少次浮点运算为衡量标准。

写法1 :

A(i,:) = A(i,:) – mult*A(j,:);

这种情况下,进行的浮点运算数如下:

写法2:

A(i , j:n) = A(i,j:n) – mult*A(j,j:n)

这种写法相对第一种写法的优化,体现在在处理每一行的时候,自动跳过了该行前面为0的元素,以减少浮点运算的次数。

它的运算次数计算过程如下:

这里进行了相当精确的计算,可以看到,对于n x n的系数矩阵,完成Guess消元至少也需要进行n的三次方次浮点运算。

承接上面对Guess消元算法的详细运算复杂度的分析,我们在分析时间复杂度的时候,往往会需要计算如下的一个和式:

这里就简单的介绍一下这个和式的一个估算方法。

我们利用幂函数与x轴围成的面积,使用一个类似夹逼准则的手法,来对这个和式进行估算。

我们将幂函数y = x^p,横坐标取m份,间距为1。

那么和式其实就是图中矩阵的和,那么我们很容易能够看到如下的一个不等式成立:

而这里我们观察前4个矩形上面的小矩形,他们和实际上等于第5个矩形,因此我们容易看到如下的不等式:

因此这个和式成功的被两个定积分给“夹逼”了,下面分别求定积分。

求线性方程组Ax=b的几种方法的比较:

《Numerical Methods》-chaper7-解线性方程组的直接方法和最小二乘问题的更多相关文章

  1. linux下 tar解压 gz解压 bz2等各种解压文件使用方法

    http://alex09.iteye.com/blog/647128 大致总结了一下linux下各种格式的压缩包的压缩.解压方法. .tar 解包:tar xvf FileName.tar 打包:t ...

  2. zImage.img、ramdisk.img、system.img、userdata.img介绍及解包、打包方法

    ramdisk.img system.img userdata.img介绍及解包.打包方法 Android 源码编译后,在out/target/product/generic下生成ramdisk.im ...

  3. Numerical Methods with MATLAB(1)

    目前正在阅读MATLAB相关的书籍:Numerical Methods with MATLAB,现在感觉这本书写的还行, 细致基础,而且写的比较清楚,同时把malab和数值算法结合在一起. 目前刚看完 ...

  4. windows下tomcat zip解压版安装方法

    下面记录一下在win7(32位)系统下,安装zip解压版的方法: 一.下载zip压缩包 地址:http://tomcat.apache.org/download-80.cgi 二.解压 我把解压包解压 ...

  5. CentOS下tar解压 gz解压 bz2等各种解压文件使用方法

    .tar  解包:tar xvf FileName.tar  打包:tar cvf FileName.tar DirName  (注:tar是打包,不是压缩!)  ———————————————  . ...

  6. 【matlab】MTATLAB解线性方程组

    在求解线性方程组时,会遇到以下几种情形:定解方程组.不定方程组.超定方程组.奇异方程组. 首先以定解线性方程组为例: format rat  化成分数 format short >> A= ...

  7. 详解Python模块导入方法

    python常被昵称为胶水语言,它能很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松联结在一起.python包含子目录中的模块方法比较简单,关键是能够在sys.path里面找到通向模块文件的 ...

  8. vue中用解构赋值的方法引入组件

    在一个组件中引入很多其他组件的时候会显得代码很臃肿,这个时候可以用es6的解构赋值的方法 在components中写入一个index.js文件 在该js文件中导出你想要引入的组件 再接着就可以在该组件 ...

  9. 高斯消去法解线性方程组(MPI)

    用一上午的时间,用MPI编写了高斯消去法解线性方程组.这次只是针对单线程负责一个线程方程的求解,对于超大规模的方程组,需要按行分块,后面会在这个基础上进行修改.总结一下这次遇到的问题: (1)MPI_ ...

随机推荐

  1. 创建Java线程池

    线程池的作用: 线程池作用就是限制系统中执行线程的数量. 根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果:少了浪费了系统资源,多了造成系统拥挤效率不高.用线程池控制线程数量,其他线 ...

  2. MVC5学习笔记

    买了一本MVC5的书:ASP.NET MVC 5 高级编程(第5版).边学边记录一下 1.快速创建模型类,如:自动实现的属性 {get;set;} 输入“prop",按Tab两次,默认属性值 ...

  3. 在ASP.NET 中调用RSACryptoServiceProvider失败,提示未找到文件

    在本地开发环境调试下,调试这个RSA加密是没问题的,但是部署到IIS就会报错. 原来是,在本地vs调试与IIS上运行是存在权限差异的.本地调试权限最大,IIS 次之. 所以在我们声明CspParame ...

  4. POJ_3143 验证“歌德巴赫猜想”

    今天晚上的火车回家啦.所以提前更出来~.愉快的收拾我的包裹~滚回家吃半个月~胖几斤又要回学校啦~ T T这个假期虽然很忙.但是我觉得很有意义.很有价值~爱你们~ 描述 验证“歌德巴赫猜想”,即:任意一 ...

  5. 理解MySQL——索引与优化(转)

    写 在前面:索引对查询的速度有着至关重要的影响,理解索引也是进行数据库性能调优的起点.考虑如下情况,假设数据库中一个表有10^6条记录,DBMS的页 面大小为4K,并存储100条记录.如果没有索引,查 ...

  6. 忘记Mysql的root密码怎么办?

    解决方法: 1.打开cmd,用net start命令查看是否开启了mysql服务,如果开启,用net stop mysql 命令关闭mysql 2.进入mysql的安装目录下的bin目录,例如:E:\ ...

  7. php多行字符串输出

      $content_header =<<<CONTENT_HEADER <section class="content-header"> <h ...

  8. iPhone分辨率

    分辨率和像素 1.iPhone5           4"     分辨率320x568,像素640x1136,@2x 2.iPhone6           4.7"  分辨率3 ...

  9. PYTHON开发--面向对象基础二

    一.成员修饰符 共有成员 私有成员, __字段名 - 无法直接访问,只能间接访问 1.     私有成员 1.1  普通方法种的私有成员 class Foo: def __init__(self, n ...

  10. mybaits不能出现小于号

    org.xml.sax.SAXParseException; lineNumber: 146; columnNumber: 54; The content of elements must consi ...