UVA10972 - RevolC FaeLoN(双连通分量)
题意: 给定一个无向图,问最少加入多少条边,使得这个图成为连通图
思路:首先注意题目给出的无向图可能是非连通的,即存在孤立点。处理孤立点之后。其它就能够当作连通块来处理。事实上跟POJ3352非常像,仅仅只是存在孤立点而已。所以找出桥,缩点,然后统计度数为0(伸出两条边)的点u和度数为1(伸出一条边)的点。最后的答案为(2 * u + v + 1) / 2。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <utility>
#include <algorithm> using namespace std; const int MAXN = 1005; struct Edge{
int to, next;
}edge[MAXN * 100]; int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], dg[MAXN], used[MAXN];
int Index;
int bridge; void addedge(int u, int v) {
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u, int pre) {
int v;
Low[u] = DFN[u] = ++Index;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if (v == pre) continue;
if (!DFN[v]) {
Tarjan(v, u);
if (Low[u] > Low[v])
Low[u] = Low[v];
if (Low[v] > DFN[u])
bridge++;
}
else if (Low[u] > DFN[v])
Low[u] = DFN[v];
}
} void init() {
memset(head, -1, sizeof(head));
memset(DFN, 0, sizeof(DFN));
memset(Low, 0, sizeof(Low));
Index = tot = 0;
bridge = 0;
} void solve(int N) {
for (int i = 1; i <= N; i++)
if (!DFN[i]) {
Tarjan(i, i);
bridge++;
} if (bridge == 1) {
printf("0\n");
}
else {
memset(used, 0, sizeof(used));
memset(dg, 0, sizeof(dg));
for (int u = 1; u <= N; u++) {
if (head[u] == -1) {
used[Low[u]] = 1;
continue;
}
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
used[Low[u]] = used[Low[v]] = 1;
if (Low[u] != Low[v]) {
dg[Low[u]]++;
}
}
} int ans = 0;
for (int u = 1; u <= N; u++) {
if (used[u] && dg[u] == 0) ans += 2;
else if (dg[u] == 1) ans++;
}
ans = (ans + 1) / 2;
printf("%d\n", ans);
}
} int main() {
int n, m;
while (scanf("%d%d", &n, &m) != EOF) {
init();
int u, v;
while (m--) {
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
solve(n);
}
return 0;
}
UVA10972 - RevolC FaeLoN(双连通分量)的更多相关文章
- UVA-10972 RevolC FaeLoN (边双连通+缩点)
题目大意:将n个点,m条边的无向图变成强连通图,最少需要加几条有向边. 题目分析:所谓强连通,就是无向图中任意两点可互达.找出所有的边连通分量,每一个边连通分量都是强连通的,那么缩点得到bcc图,只需 ...
- Uva10972(RevolC FaeLoN)
题目链接:传送门 题目大意:给你一副无向图,问至少加多少条边使图成为边双联通图 题目思路:tarjan算法+缩点(如果已经是双连通图就直接输出0) #include <iostream> ...
- UVA 10972 - RevolC FaeLoN(边-双连通分量)
UVA 10972 - RevolC FaeLoN option=com_onlinejudge&Itemid=8&page=show_problem&category=547 ...
- UVA 10972 RevolC FaeLoN(边-双连通+缩点)
很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- 【Codefoces487E/UOJ#30】Tourists Tarjan 点双连通分量 + 树链剖分
E. Tourists time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard inpu ...
- 【BZOJ-2730】矿场搭建 Tarjan 双连通分量
2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1602 Solved: 751[Submit][Statu ...
- hihoCoder 1184 连通性二·边的双连通分量
#1184 : 连通性二·边的双连通分量 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在基本的网络搭建完成后,学校为了方便管理还需要对所有的服务器进行编组,网络所的老 ...
- HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...
随机推荐
- [Linux]关机和重启命令
Linux中常用的关机和重新启动命令有shutdown.halt.reboot以及init,它们都可以达到关机和重新启动的目的,但是每个命令的内部工作过程是不同的,下面将逐一进行介绍. 1. shu ...
- php简易计算器实例
<html> <head> <title>PHP实现简单计算器</title> <meta http-equiv="Content-Ty ...
- ajax请求遇到服务器重启或中断
常会有不断轮询发送ajax请求,处理一些业务的场景. 要考虑到: 1. 服务器重启,中断,恢复后仍然能恢复正常业务处理. 服务器重启过程中,再次发送请求,请求状态将变为net::ERR_CONNECT ...
- [BZOJ 1559] [JSOI2009] 密码 【AC自动机DP】
题目链接:BZOJ - 1559 题目分析 将给定的串建成AC自动机,然后在AC自动机上状压DP. 转移边就是Father -> Son 或 Now -> Fail. f[i][j][k] ...
- 【Java】Java里String 的equals和==
Java里面有对象和对象的引用的概念,在String方面,==比较的是引用,equals比较的是对象的具体值. String s1 = new String("abc");Stri ...
- Hidden Password
zoj1729:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=729 题意:就是求字符串的最小表示,模板题. 题解:直接贴模板. ...
- Git标签管理
一般我们发布一个新版本到线上服务器时都会在版本库中打一个标签,这时就确定了某个版本将发布到线上.我们可以随时可以查看这个打标签的版本,也就 是说标签其实呢,就是版本库中一个快照.简单说标签就是指向某个 ...
- 几种交换两个数函数(swap函数)的写法和解析
#include <iostream> using namespace std; /*值传递,局部变量a和b的值确实在调用swap0时变化了,当结束时,他们绳命周期结束*/ void sw ...
- bzoj3689
这题做法很多可以通过类似noi超级钢琴那道题目的做法用可持久化+trie来做还可以直接在trie树上维护size域然后类似查找k大的做法做总之还是比较水的 type node=record kth,n ...
- Java Web中web.xml的作用
每一个javaWeb工程都有一个web.xml配置文件,那么他到底有什么作用呢?它是每一个web工程都必的必须的吗? web.xml文件是用来初始化工程配置信息的,比如说welcome页面,fil ...