bzoj 2242 [SDOI2011]计算器(数论知识)
Description
Input
输入包含多组数据。
Output
Sample Input
3 1
2 1 3
2 2 3
2 3 3
【样例输入2】
3 2
2 1 3
2 2 3
2 3 3
【数据规模和约定】
对于100%的数据,1<=y,z,p<=10^9,为质数,1<=T<=10。
Sample Output
2
1
2
【样例输出2】
2
1
0
【思路】
快速幂,拓展欧几里得,BSGS
第一问快速幂求得。
第二问求axΞ b(mod n),转化为ax=ny+b,转化为ax+ny=b,利用拓展欧几里得算法求出ax+ny=gcd(a,n),如果b不是gcd的倍数则无解否则为x/gcd*b。
第三问求ax Ξb(mod n),BSGS算法。我们需要验证0..n-1内的数。分块,设每块大小为m,求出0..m-1内的ai % n保存为ei,对于m..2m-1内的数,我们只需要验证是否存在有am *ei=b(mod n),即判断是否存在ei=a-m *b (mod n),这样用一个hash表存一下ei然后求一下在模n下am的逆元就可以了。
时间复杂度为O((m+n/m)logm),当m取n½的时候复杂度较优为O(n½logn)
【代码】
#include<map>
#include<cmath>
#include<cstdio>
using namespace std; typedef long long LL;
LL a,b,c,T,k; LL pow(LL x,LL p,LL MOD) {
LL tmp=x,ans=;
while(p) {
if(p&) ans=(ans*tmp)%MOD;
tmp=(tmp*tmp)%MOD;
p>>=;
}
return ans;
}
void gcd(LL a,LL b,LL& d,LL& x,LL& y) {
if(!b) d=a,x=,y=;
else gcd(b,a%b,d,y,x),y-=x*(a/b);
}
LL inv(LL a,LL n) {
LL d,x,y;
gcd(a,n,d,x,y);
return d==? (x+n)%n:-;
}
LL log_mod(LL a,LL b,LL n) {
LL m,v,e=,i;
m=sqrt(n+0.5);
v=inv(pow(a,m,n),n);
map<LL,LL> mp;
mp[]=;
for(LL i=;i<m;i++) {
e=(e*a)%n;
if(!mp.count(e)) mp[e]=i;
}
for(LL i=;i<m;i++) {
if(mp.count(b)) return i*m+mp[b];
b=(b*v)%n;
}
return -;
} int main() {
scanf("%lld%lld",&T,&k);
while(T--) {
scanf("%lld%lld%lld",&a,&b,&c);
if(k==) {
printf("%lld\n",pow(a,b,c));
} else
if(k==) {
LL d,x,y;
gcd(a,c,d,x,y);
if(b%d) puts("Orz, I cannot find x!");
else {
LL ans=((x*b/d)%c+c)%c;
printf("%lld\n",ans);
}
} else {
LL ans=log_mod(a,b,c);
if(ans==-) puts("Orz, I cannot find x!");
else printf("%lld\n",ans);
}
}
return ;
}
bzoj 2242 [SDOI2011]计算器(数论知识)的更多相关文章
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
- BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
- [原博客] BZOJ 2242 [SDOI2011] 计算器
题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...
- BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
- BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...
- bzoj 2242 [SDOI2011]计算器——BSGS模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...
- BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD
题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...
- bzoj 2242: [SDOI2011]计算器
#include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...
随机推荐
- 本地化web开发的一个例子-jquery.i18n.properties
关键字:Web本地化, jquery,jquery.i18n.properties. 运行环境:Chrome, IE. 本文介绍使用jquery.i18n.properties对网站前端实现本地化,支 ...
- Shell面试题
1.用Shell编程,判断一文件是不是块或字符设备文件,如果是将其拷贝到 /dev 目录下. #!/bin/bash#1.sh#判断一文件是不是字符或块设备文件,如果是将其拷贝到 /dev 目录下#f ...
- Kinetic使用注意点--animation
new Animation(func, layers) 参数: func:每一帧都会调用一次此函数.此函数接收一个包含四个元素的参数对象,时间单位均为毫秒. { timeDiff:"上一帧和 ...
- BZOJ Tyvj 1729 文艺平衡树
Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 ...
- js add media query
var msViewportStyle = document.createElement("style"); msViewportStyle.appendChild( docume ...
- 统计 iOS 设备锁定、解锁次数-b
今天下了个软件,可以记录手机解锁的次数和使用时间,当然啦,App 必须在后台运行着.当时比较纳闷的是有什么 API 可以接收设备解锁事件或通知的,Google 了下,还真有哎——我是链接:http:/ ...
- JSON和JSONP,也许你会豁然开朗,含jQuery用例
前言: 说到AJAX就会不可避免的面临两个问题,第一个是AJAX以何种格式来交换数据?第二个是跨域的需求如何解决?这两个问题目前都有不同的解决方案,比如数据可以用自定义字符串或者用XML来描述,跨域可 ...
- SQL2008附加数据库提示错误:5120
前几天在附加数据库时,出现了这个错误 在win7 x64系统上使用sql2008进行附加数据库(包括在x86系统正在使用的数据库文件,直接拷贝附加在X64系统中)时,提示无法打开文 ...
- SpringMVC可以配置多个拦截后缀*.html和.do等
一个servlet可以配置多个servlet-mapping, 因此在xml文件中我们可以这样配置: <!-- springmvc配置 --> <servlet> <se ...
- iis下设置默认页
IIS设置设默认页 计算机-->右键管理-->服务器和应用程序-->Internet信息服务 -->网站-->你发布的网站名-->功能视图-->IIS大类里- ...