题目链接: BZOJ - 1576

题目分析

首先Orz Hzwer的题解

先使用 dijikstra 求出最短路径树。

那么对于一条不在最短路径树上的边 (u -> v, w) 我们可以先沿树边从 1 走到 u ,再走这条边到 v ,然后再沿树边向上,可以走到 (LCA(u, v), v] 的所有点 (不包括LCA(u, v)!!)。

对于一个属于 (LCA(u, v), v] 的点 x,这种走法的距离为 d[u] + w + d[v] - d[x] ,那么我们就可以用 d[u] + w + d[v] 更新 (LCA(u, v), v] 这一段点的权值,使用树链剖分 + 线段树。

枚举每一条非树边进行更新。

最后每个点 x 的答案就是 x 的权值 - d[x] 。

注意!LCA(u, v) 是不能被这条边更新的!

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue> using namespace std; const int MaxN = 100000 + 5, MaxM = 200000 + 5, MaxLog = 20, INF = 999999999; int n, m, Index;
int Father[MaxN], Depth[MaxN], Top[MaxN], Size[MaxN], Son[MaxN], Pos[MaxN];
int d[MaxN], D[MaxN * 4], Jump[MaxN][MaxLog + 3]; struct Edge
{
int u, v, w;
bool Mark;
Edge *Next;
} E[MaxM * 2], *P = E, *Pre[MaxN], *Point[MaxN]; inline void AddEdge(int x, int y, int z) {
++P; P -> u = x; P -> v = y; P -> w = z; P -> Mark = false;
P -> Next = Point[x]; Point[x] = P;
} struct ES
{
int x, y;
ES() {}
ES(int a, int b) {
x = a; y = b;
}
}; struct Cmp
{
bool operator () (ES a, ES b) {
return a.y > b.y;
}
}; priority_queue<ES, vector<ES>, Cmp> Q; bool Visit[MaxN]; void Dijkstra() {
while (!Q.empty()) Q.pop();
for (int i = 1; i <= n; ++i) {
d[i] = INF; Visit[i] = false;
}
d[1] = 0;
for (int i = 1; i <= n; ++i) Q.push(ES(i, d[i]));
ES Now;
int x;
while (!Q.empty()) {
Now = Q.top(); Q.pop();
x = Now.x;
if (Visit[x]) continue;
Visit[x] = true;
for (Edge *j = Point[x]; j; j = j -> Next) {
if (d[x] + (j -> w) < d[j -> v]) {
d[j -> v] = d[x] + j -> w;
if (Pre[j -> v] != NULL) Pre[j -> v] -> Mark = false;
Pre[j -> v] = j;
j -> Mark = true;
Q.push(ES(j -> v, d[j -> v]));
}
}
}
} int DFS_1(int x, int Dep, int Fa) {
Depth[x] = Dep; Father[x] = Fa;
Size[x] = 1;
int SonSize, MaxSonSize;
SonSize = MaxSonSize = 0;
for (Edge *j = Point[x]; j; j = j -> Next) {
if (j -> v == Fa || j -> Mark == false) continue;
SonSize = DFS_1(j -> v, Dep + 1, x);
if (SonSize > MaxSonSize) {
MaxSonSize = SonSize;
Son[x] = j -> v;
}
Size[x] += SonSize;
}
return Size[x];
} void DFS_2(int x) {
if (x == 0) return;
if (x == Son[Father[x]]) Top[x] = Top[Father[x]];
else Top[x] = x;
Pos[x] = ++Index;
DFS_2(Son[x]);
for (Edge *j = Point[x]; j; j = j -> Next) {
if (j -> v == Father[x] || j -> v == Son[x] || j -> Mark == false) continue;
DFS_2(j -> v);
}
} void Build_Tree(int x, int s, int t) {
D[x] = INF;
if (s == t) return;
int m = (s + t) >> 1;
Build_Tree(x << 1, s, m);
Build_Tree(x << 1 | 1, m + 1, t);
} void Init_LCA() {
for (int i = 1; i <= n; ++i) Jump[i][0] = Father[i];
for (int j = 1; j <= MaxLog; ++j) {
for (int i = 1; i <= n; ++i) {
if (Depth[i] < (1 << j)) continue;
Jump[i][j] = Jump[Jump[i][j - 1]][j- 1];
}
}
} int LCA(int x, int y) {
int Dif;
if (Depth[x] < Depth[y]) swap(x, y);
Dif = Depth[x] - Depth[y];
if (Dif) {
for (int i = 0; i <= MaxLog; ++i) {
if (Dif & (1 << i)) x = Jump[x][i];
}
}
if (x == y) return x;
for (int i = MaxLog; i >= 0; --i) {
if (Jump[x][i] != Jump[y][i]) {
x = Jump[x][i];
y = Jump[y][i];
}
}
return Father[x];
} inline int gmin(int a, int b) {return a < b ? a : b;} void Paint(int x, int Num) {
if (Num >= D[x]) return;
D[x] = Num;
} void PushDown(int x) {
if (D[x] == INF) return;
Paint(x << 1, D[x]);
Paint(x << 1 | 1, D[x]);
D[x] = INF;
} void Change(int x, int s, int t, int l, int r, int Num) {
if (l <= s && r >= t) {
Paint(x, Num);
return;
}
PushDown(x);
int m = (s + t) >> 1;
if (l <= m) Change(x << 1, s, m, l, r, Num);
if (r >= m + 1) Change(x << 1 | 1, m + 1, t, l, r, Num);
} void EChange(int x, int y, int z) {
int fx, fy;
fx = Top[x]; fy = Top[y];
while (fx != fy) {
Change(1, 1, n, Pos[fx], Pos[x], z);
x = Father[fx];
fx = Top[x];
}
if (x != y) Change(1, 1, n, Pos[y] + 1, Pos[x], z);
} int Get(int x, int s, int t, int p) {
if (s == t) return D[x];
PushDown(x);
int m = (s + t) >> 1;
int ret;
if (p <= m) ret = Get(x << 1, s, m, p);
else ret = Get(x << 1 | 1, m + 1, t, p);
return ret;
} int main()
{
scanf("%d%d", &n, &m);
int a, b, c;
for (int i = 1; i <= m; ++i) {
scanf("%d%d%d", &a, &b, &c);
AddEdge(a, b, c);
AddEdge(b, a, c);
}
Dijkstra();
DFS_1(1, 0, 0);
Index = 0;
DFS_2(1);
Build_Tree(1, 1, n);
Init_LCA();
int t;
for (Edge *j = E + 1; ; ++j) {
if (j -> Mark) continue;
t = LCA(j -> u, j -> v);
EChange(j -> v, t, d[j -> u] + j -> w + d[j -> v]);
if (j == P) break;
}
int Temp;
for (int i = 2; i <= n; ++i) {
Temp = Get(1, 1, n, Pos[i]);
if (Temp < INF) printf("%d\n", Temp - d[i]);
else printf("-1\n");
}
return 0;
}

  

[BZOJ 1576] [Usaco2009 Jan] 安全路经Travel 【树链剖分】的更多相关文章

  1. bzoj 1576: [Usaco2009 Jan]安全路经Travel 树链剖分

    1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 665  Solved: 227[Sub ...

  2. BZOJ1576: [Usaco2009 Jan]安全路经Travel(树链剖分)

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  3. bzoj 1576 [Usaco2009 Jan]安全路经Travel(树链剖分,线段树)

    [题意] 给定一个无向图,找到1-i所有的次短路经,要求与最短路径的最后一条边不重叠. [思路] 首先用dijkstra算法构造以1为根的最短路树. 将一条无向边看作两条有向边,考察一条不在最短路树上 ...

  4. bzoj 1576: [Usaco2009 Jan]安全路经Travel【spfa+树链剖分+线段树】

    这几天写USACO水题脑子锈住了--上来就贪心,一交就WA 事实上这个是一个叫最短路树的东西,因为能保证只有一条最短路,所以所有最短路合起来是一棵以1为根的树,并且在这棵树上,每个点被精灵占据的路是它 ...

  5. BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)

    题目链接 BZOJ 洛谷 先求最短路树.考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离 ...

  6. bzoj 1576: [Usaco2009 Jan]安全路经Travel——并查集+dijkstra

    Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...

  7. BZOJ 1576: [Usaco2009 Jan]安全路经Travel

    日常自闭半小时后看题解,太弱了qwq. 感觉这道题还是比较难的,解法十分巧妙,不容易想到. 首先题目说了起点到每个点的最短路都是唯一的,那么对这个图求最短路图必定是一棵树,而且这棵树是唯一的. 那么我 ...

  8. 【BZOJ】1576 [Usaco2009 Jan]安全路经Travel

    [算法]最短路树+(树链剖分+线段树)||最短路树+并查集 [题解] 两种方法的思想是一样的,首先题目限制了最短路树唯一. 那么建出最短路树后,就是询问对于每个点断掉父边后重新找路径的最小值,其它路径 ...

  9. 【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集

    [BZOJ1576][Usaco2009 Jan]安全路经Travel Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, ...

随机推荐

  1. 移动开发框架,第【二】弹:Hammer.js 移动设备触摸手势js库

    hammer.js是一个多点触摸手势库,能够为网页加入Tap.Double Tap.Swipe.Hold.Pinch.Drag等多点触摸事件,免去自己监听底层touchstart.touchmove. ...

  2. 在ASP.NET中,IE与Firefox下载文件带汉字名时乱码的解决方法

    解决办法: HttpContext.Current.Response.Clear(); HttpContext.Current.Response.Buffer = true; HttpContext. ...

  3. Building Tomcat7 source step by step---官方文档

    Table of Contents Introduction Download a Java Development Kit (JDK) version 6 Install Apache Ant 1. ...

  4. css 权威指南笔记( 六)-基本视觉格式化

    块级元素 百分数:边框的宽度不能是百分数,只能是长度.基本原则是只使用百分数将无法创建完全灵活的元素布局(即所有属性都可设置). 合并垂直外边距 相邻外边距会沿着竖轴合并.两个外边距中较小的一个会被较 ...

  5. 如何在单元测试中测试异步函数,block回调这种

    大概有四种方法: runloop 阻塞主进程等待结果 semphaore 阻塞主进程等待结果 使用XCTestExpectation 阻塞主线程等待(我用这个,xcode自带的,为啥不用) 使用第三方 ...

  6. dede 最近一天发布的文章标题前加hot

    {dede:list pagesize ='15'} <!-- 模板1 --> <div class="news_list tp_a setp1"> < ...

  7. webViewDidFinishLoad 执行多次的问题

    在做网页加载进度条的时候,发现UIWebViewDelegate中webViewDidFinishLoad方法会执行多次: - (void)webViewDidStartLoad:(UIWebView ...

  8. C#winform程序自定义鼠标样式

    public void SetCursor(Bitmap cursor, Point hotPoint) { int hotX = hotPoint.X; int hotY = hotPoint.Y; ...

  9. MATLAB中mexFunction函数的接口规范

    MEX文件的调用极为方便,其调用方式与MATALAB的内建函数完全相同,只需要在命令窗口内输入对应的文件名称即可. C语言MEX程序代码文件有计算子例程(Computational routine)和 ...

  10. Bridge 模式

    Bridge 模式将抽象和行为划分开来,各自独立,但能动态的结合.在面向对象设计的基本概念中,对象这个概念实际是由属性和行为两个部分组成的,属性我们可以认为是一种静止的,是一种抽象,一般情况下,行为是 ...