http://poj.org/problem?id=1364

题意真心看不大懂啊。。。

现在假设有一个这样的序列,S={a1,a2,a3,a4...ai...at}
其中ai=a*si,其实这句可以忽略不看
现在给出一个不等式,使得ai+a(i+1)+a(i+2)+...+a(i+n)<ki或者是ai+a(i+1)+a(i+2)+...+a(i+n)>ki
首先给出两个数分别代表S序列有多少个,有多少个不等式
不等式可以这样描述
给出四个参数第一个数i可以代表序列的第几项,然后给出n,这样前面两个数就可以描述为ai+a(i+1)+...a(i+n),即从i到n的连续和,再给出一个符号和一个ki
当符号为gt代表‘>’,符号为lt代表‘<'
那么样例可以表示
1 2 gt 0
a1+a2+a3>0
2 2 lt 2
a2+a3+a4<2
最后问你所有不等式是否都满足条件,若满足输出lamentable kingdom,不满足输出successful conspiracy,这里要注意了,不要搞反了

解题思路:一个典型的差分约束,很容易推出约束不等式

首先设Si=a1+a2+a3+...+ai

那么根据样例可以得出
S3-S0>0---->S0-S3<=-1
S4-S1<2---->S4-S1<=1
因为差分约束的条件是小于等于,所以我们将ki-1可以得到一个等于号
那么通式可以表示为
a  b  gt  c
S[a-1]-s[a+b]<=-ki-1
a  b  lt  c
S[a+b]-S[a-1]<=ki-1

那么根据差分约束建图,加入这些有向边

gt:  <a+b,a-1>=-ki-1
lt:  <a-1,a+b>=ki-1
再根据bellman_ford 或 SPAF 判断是否有无负环即可
若出现负环了则这个序列不满足所有的不等式

继续SPFA吧。。

这里用了无需建立超级源点的SPFA算法,在SPFA开始时将所有结点都放进队列,这样表示一开始和所有点都相连了,初始化dis数组为全0,相当于超级源点的边权值 

总结:1、小于和小于等于关系的转化 2、超级源点的另一种建法

 #include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int maxn = ; int n,m;
int cnt;
int p[maxn];
struct node
{
int u,v,w;
int next;
}edge[maxn]; void add(int u, int v, int w)
{
cnt++;
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
edge[cnt].next = p[u];
p[u] = cnt;
}
//无需建立超级源点的SPFA
int SPFA()
{
queue<int> que;
while(!que.empty())
que.pop();
int dis[maxn],vexcnt[maxn];
bool inque[maxn];
memset(dis,,sizeof(dis));//dis全部初始化为0,
memset(inque,true,sizeof(inque));//inque全部初始化为1
memset(vexcnt,,sizeof(vexcnt)); for(int i = ; i <= n; i++)
que.push(i);//先让所有节点进队列
while(!que.empty())
{
int u = que.front();
que.pop();
inque[u] = false; for(int i = p[u]; i; i = edge[i].next)
{
if(dis[edge[i].v] > dis[u] + edge[i].w)
{
dis[edge[i].v] = dis[u] + edge[i].w;
if(!inque[edge[i].v])
{
inque[edge[i].v] = true;
que.push(edge[i].v);
vexcnt[edge[i].v]++;
if(vexcnt[edge[i].v] > n)//进队超过n次说明有负环
return ;
}
}
}
}
return ;
} int main()
{
while(~scanf("%d",&n) && n)
{
scanf("%d",&m);
int a,b,w;
char str[];
cnt = ;
memset(p,,sizeof(p));
for(int i = ; i < m; i++)
{
scanf("%d %d %s %d",&a,&b,str,&w);
if(strcmp(str,"gt") == )
add(a+b,a-,-w-);//加边
else add(a-,a+b,w-);//加边,均将不等式转化为 <=,
}
if(SPFA()) printf("lamentable kingdom\n");
else printf("successful conspiracy\n"); }
return ;
}

其实Bellman_ford 比SPFA更快点,普通的Bellman_ford,记得要松弛 n次。

 #include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int maxn = ; int n,m;
int cnt;
struct node
{
int u,v,w;
}edge[maxn]; void add(int u, int v, int w)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].w = w;
cnt++;
}
int bellman_ford()
{
int dis[maxn];
memset(dis,,sizeof(dis)); for(int i = ; i <= n; i++)
{
for(int j = ; j < m; j++)
{
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].w)
dis[edge[j].v] = dis[edge[j].u] + edge[j].w;
}
}
for(int j = ; j < m; j++)
{
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].w)
return ;
}
return ;
}
int main()
{
while(~scanf("%d",&n) && n)
{
scanf("%d",&m);
int a,b,w;
char str[];
cnt = ;
for(int i = ; i < m; i++)
{
scanf("%d %d %s %d",&a,&b,str,&w);
if(strcmp(str,"gt") == )
add(a+b,a-,-w-);//加边
else add(a-,a+b,w-);//加边,均将不等式转化为 <=,
}
if(bellman_ford())
printf("lamentable kingdom\n");
else printf("successful conspiracy\n");
}
return ;
}


King(差分约束)的更多相关文章

  1. POJ 1364 King --差分约束第一题

    题意:求给定的一组不等式是否有解,不等式要么是:SUM(Xi) (a<=i<=b) > k (1) 要么是 SUM(Xi) (a<=i<=b) < k (2) 分析 ...

  2. [poj 1364]King[差分约束详解(续篇)][超级源点][SPFA][Bellman-Ford]

    题意 有n个数的序列, 下标为[1.. N ], 限制条件为: 下标从 si 到 si+ni 的项求和 < 或 > ki. 一共有m个限制条件. 问是否存在满足条件的序列. 思路 转化为差 ...

  3. King 差分约束 判负环

    给出n个不等式 给出四个参数第一个数i可以代表序列的第几项,然后给出n,这样前面两个数就可以描述为ai+a(i+1)+...a(i+n),即从i到n的连续和,再给出一个符号和一个ki当符号为gt代表‘ ...

  4. UVALive 5532 King(差分约束,spfa)

    题意:假设一个序列S有n个元素,现在有一堆约束,限制在某些连续子序列之和上,分别有符号>和<.问序列S是否存在?(看题意都看了半小时了!) 注意所给的形式是(a,b,c,d),表示:区间之 ...

  5. poj 1364 King(差分约束)

    题目:http://poj.org/problem?id=1364 #include <iostream> #include <cstdio> #include <cst ...

  6. King(差分约束)

    http://poj.org/problem?id=1364 题意:输入i,n,gt(lt),k; 判断是否存在这样一个序列,从第 i 项加到第 n+i 项的和 <(lt) k 或 >(g ...

  7. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  8. 转载 - 最短路&差分约束题集

    出处:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548    A strange lift基础最短路(或bfs)★ ...

  9. POJ 1364 King (差分约束)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8660   Accepted: 3263 Description ...

  10. hdu 1531 king(差分约束)

    King Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

随机推荐

  1. web服务器压力测试工具

    http_load 是运行在linux操作系统上的命令行测试工具, 用来对网站做压力测试. 下载地址:http://www.acme.com/software/http_load/http_load- ...

  2. 一、VSTO概述

    一.什么是VSTO? VSTO = Visual Studo Tools for Office,是.net平台下的Office开发技术.相对于传统的VBA(Visual Basic Applicati ...

  3. VMware Workstation不能启用虚拟设备floppy0由于灭有相应的有效设备在主机上. 你要尝试在每次打开虚拟机电源时连接此虚拟设备?

    编辑虚拟机的硬件,把软盘取消掉,floppy的提示就没有了

  4. rsync 的使用和参数解释

    备份往往可以为我们提供一种恢复的策略,因此在实际的生产应用中我们需要对系统的各个配置以及数据进行备份.然而普通的备份都是在本地磁盘或者相应的设备上进行,其实这样也存在一种缺陷,就是设备也出现问题怎么办 ...

  5. Python:如何得到Popen的输出?

    from:http://www.cnblogs.com/bluescorpio/archive/2010/05/04/1727020.html 最近在用subprocess中的Popen做个磁盘监控小 ...

  6. easy ui tabs 顶部绑定事件

    $(function(){     $('#tb').tabs('bindclick', function(index, title){     }); }); $.extend($.fn.tabs. ...

  7. 《JavaScript高级程序设计》笔记(3):传递参数

    待更新... 9.17更新: ECMAScript中所有函数的参数都是按值传递的.也就是说,把函数外部复制给函数内部的参数,就和把值从一个变量复制到另一个变量一样.基本类型值的传递如同基本类型变量的复 ...

  8. SQL Proc(存储过程)/tran(事物)

    存储过程好比C#方法 1.事物写在过程里面,直接调用存储过程 1.1没有参数的过程 /*transaction事物,procedure存储过程*/ create proc CopyTable_1_10 ...

  9. MySql中常用语句

    1.查询语句: SELECT  查询字段  FROM  表名   WHERE 条件 查询字段可以使用 通配符* 字段名 别名(把长的名字命名一个别名,比较短的) 通配符:SELECT * FROM ' ...

  10. linux 下C语言编程库文件处理与Makefile编写

    做开发快3年了,在linux下编译安装软件算是家常便饭了.就拿gcc来说,都有不下10次了,可基本每次都会碰到些奇奇怪怪的问题.看来还是像vs.codeblocks这样的ide把人弄蠢了.便下定决心一 ...