一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/

我们将用整个第二章来研究各种各样的概率分布以及它们的性质。然而,在这里介绍连续变量一种最重要的概率分布是很方便的。这种分布就是正态分布(normal distribution)或者高斯分布(Gaussian distribution)。在其余章节中(事实上在整本书中),我们将会经常用到这种分布。

正态分布是这么定义的:

图像长成这样:

我们待会被数学折磨完后再来了解这些参数的意义。

先来看看正态分布几个性质:全正且归一

好,接下来我们来算一下正态分布的期望以及二阶矩的期望以及方差。

先从简单的一阶期望开始:

然后我们就磨出来了,喜大普奔。

二阶矩似乎道理是一样的。以后再补上吧。

那么我们就把方差求出来了:

现在我们就知道每一个参数的意义了:

μ,被叫做均值(mean),以及σ2,被叫做方差(variance)。方差的平方 根,由σ给定,被叫做标准(standard deviation)。方差的倒数,记作β = 1 ,被叫做精度。

分布的最大值是众数。对于正态分布来说,众数是等于均值的。

我们也对D维向量x的正态分布感兴趣(不包括我),它是这么定义的:

现在假定我们有一个观测的数据集x = (x1, . . . , xN )T ,表示标量变量x的N次观测。注意, 我们使用一个字体不同的x来和向量变量(x1, . . . , xD)T 作区分,后者记作x。我们假定各次观 测是独立地从高分布中抽取的,分布的均值μ和方差σ2未知,我们想根据数据集来确定这 参数。独立地从相同的数据中抽取的数据点被称为独立同分布(independent and identically distributed),通常缩写成i.i.d.。我们已看到两个独立事件的联合概率可以由各个事件的边缘概率的乘积得到。由于我们的数据集x是独立同布的,因此给定μ和σ2,我们可以给出数据集的概率:

我们就得到了正态分布的似然函数。我们取对数就可以得到对数似然函数:

我们分别关于两个参数最大化对数似然函数,就得到了样本均值和样本方差:

  

事实上,我们发现样本均值应该是无偏的,也就是有:

对于样本方差,我们则需要考量。

当数据点的数量N增大时,最大似然解的偏移会变得不太严重,并且在极 限N → ∞的情况下,方差的最大似然解与产生数据的分布的真实方差相等。在实际应用中,只要N 的值不太小,那么偏移的现象不是个大问题。然而,在本书中,我们感兴趣的是带有很多参数的复杂模型。这些模型中,最大似然的偏移问题会更加严重。实际上,我们会看到,最大似然的偏移问题是我们在多项式曲线拟合问题中遇到的过拟合问题的核心。

一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布的更多相关文章

  1. 一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率

    一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一节简单讲 ...

  2. 一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差

    一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  3. 一起啃PRML - 1.2.1 Probability densities 概率密度

    一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...

  4. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  5. 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合

    一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...

  6. 一起啃PRML - 1 Introduction 绪论

    一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...

  7. 一起啃PRML - Preface 前言

    一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...

  8. 正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

    正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影 ...

  9. UNDERSTANDING THE GAUSSIAN DISTRIBUTION

    UNDERSTANDING THE GAUSSIAN DISTRIBUTION Randomness is so present in our reality that we are used to ...

随机推荐

  1. hadoop_集群安装_2

    由于上一篇文章http://www.cnblogs.com/inuyasha1027/p/hadoop_cluster_install_1.html 截图太多,占用了太多的地方,所以将VMTools ...

  2. 基于SSM框架的简易的分页功能——包含maven项目的搭建

    新人第一次发帖,有什么不对的地方请多多指教~~ 分页这个功能经常会被使用到,我之前学习的时候找了很多资源,可都看不懂(笨死算了),最后还是在朋友帮助下做出了这个分页.我现在把我所能想到的知识 做了一个 ...

  3. cocos2d-x v3.0的window平台搭建和编译成andriod程序

    首先添加这个地址到系统环境变量,path 然后打开CMD,输入如下语句 现在就可以创建一个新项目了 这样一个空的cocos2d-x v3.0的项目就创建好了 接下来编译andriod程序 先在系统环境 ...

  4. 【转】JSON简介以及用法代码汇总

    什么是JSON? JavaScript 对象表示法(JavaScript Object Notation). JSON是一种轻量级的数据交换格式,某个JSON格式的文件内部譬如可以长成这样: { &q ...

  5. uglifyjs 压缩js

    第一步 安装nodejs dos下执行 node -v npm -v

  6. 添加PATH

    在Linux CentOS系统上安装完php和MySQL后,为了使用方便,需要将php和mysql命令加到系统命令中,如果在没有添加到环境变量之前,执行“php -v”命令查看当前php版本信息时时, ...

  7. 易买网(注册Ajax讲解)

    关于注册(用到Ajax) 运用onblur进行时时刷新 创建所需用的Servlet 好了 Ajax其实不是很难  如果还是不懂可以私信我呦-^^-!

  8. Java Servlet 接收上传文件

    在Java中使用 Servlet 来接收用户上传的文件,需要用到两个apache包,分别是 commons-fileupload 和 commons-io 包: 如果直接在doPost中,使用requ ...

  9. 迷你版 smarty --模板引擎和解析

    http://blog.ipodmp.com/archives/php-write-a-mini-smarty-template-engine/ 迷你版Smarty模板引擎目录结构如下: ① 要开发一 ...

  10. java String字符串——进度1

    String字符串    在JAVA中提供了多种创建字符串对象的方法,这里介绍最简单的两种,    第一种是直接赋值,    第二种是使用String类的构造方法:    如下所示:    Strin ...