uva 10820 (筛法构造欧拉函数)
send a table
When participating in programming contests, you sometimes face the following problem: You know
how to calcutale the output for the given input values, but your algorithm is way too slow to ever
pass the time limit. However hard you try, you just can’t discover the proper break-off conditions that
would bring down the number of iterations to within acceptable limits.
Now if the range of input values is not too big, there is a way out of this. Let your PC rattle for half
an hour and produce a table of answers for all possible input values, encode this table into a program,
submit it to the judge, et voila: Accepted in 0.000 seconds! (Some would argue that this is cheating,
but remember: In love and programming contests everything is permitted).
Faced with this problem during one programming contest, Jimmy decided to apply such a ’technique’.
But however hard he tried, he wasn’t able to squeeze all his pre-calculated values into a program
small enough to pass the judge. The situation looked hopeless, until he discovered the following property
regarding the answers: the answers where calculated from two integers, but whenever the two
input values had a common factor, the answer could be easily derived from the answer for which the
input values were divided by that factor. To put it in other words:
Say Jimmy had to calculate a function Answer(x, y) where x and y are both integers in the range
[1, N]. When he knows Answer(x, y), he can easily derive Answer(k ∗ x, k ∗ y), where k is any integer
from it by applying some simple calculations involving Answer(x, y) and k.
For example if N = 4, he only needs to know the answers for 11 out of the 16 possible input value
combinations: Answer(1, 1), Answer(1, 2), Answer(2, 1), Answer(1, 3), Answer(2, 3), Answer(3, 2),
Answer(3, 1), Answer(1, 4), Answer(3, 4), Answer(4, 3) and Answer(4, 1). The other 5 can be derived
from them (Answer(2, 2), Answer(3, 3) and Answer(4, 4) from Answer(1, 1), Answer(2, 4) from
Answer(1, 2), and Answer(4, 2) from Answer(2, 1)). Note that the function Answer is not symmetric,
so Answer(3, 2) can not be derived from Answer(2, 3).
Now what we want you to do is: for any values of N from 1 upto and including 50000, give the
number of function Jimmy has to pre-calculate.
Input
The input file contains at most 600 lines of inputs. Each line contains an integer less than 50001 which
indicates the value of N. Input is terminated by a line which contains a zero. This line should not be
processed.
Output
For each line of input produce one line of output. This line contains an integer which indicates how
many values Jimmy has to pre-calculate for a certain value of N.
Sample Input
2
5
0
Sample Output
3
19
题解:输入一个数n,有多少个二元组(x,y)满足:1<=x,y<=n,且x和y互素。不难发现除了(1,1)之外,其他二元组的x和y都不相等。设满足x<y的二元组有a【n】个,那么答案就是2*a【n】-1,因为(1,1)时重复了一个1。
#include <iostream>
#include<cstring>
using namespace std;
int a[];
int sums[];
int f[];
int n;
int main()
{
memset(a,,sizeof(a));
a[]=;
for (int i = ; i < ; ++ i)
if (!a[i])
{
for (int j = i ; j < ; j += i)
{
if(!a[j])
a[j] = j;
a[j] = a[j]/i*(i-);
}
} sums[] = ;
for (int i = ; i < ; ++ i)
sums[i] = sums[i-]+a[i];
while (cin >> n && n)
cout << *sums[n]- << endl; return ;
}
uva 10820 (筛法构造欧拉函数)的更多相关文章
- Help Tomisu UVA - 11440 难推导+欧拉函数,给定正整数N和M, 统计2和N!之间有多少个整数x满足,x的所有素因子都大于M (2<=N<=1e7, 1<=M<=N, N-M<=1E5) 输出答案除以1e8+7的余数。
/** 题目:Help Tomisu UVA - 11440 链接:https://vjudge.net/problem/UVA-11440 题意:给定正整数N和M, 统计2和N!之间有多少个整数x满 ...
- 筛法求欧拉函数(poj2478
求1-n的欧拉函数的值 #include <iostream> #include <cstdio> #include <queue> #include <al ...
- UVA 11426 GCD-Extreme(II) ★ (欧拉函数)
题意 求Σ{1<=i<N} Σ{i<j<=N} GCD(i, j) (N<=4000000) 分析 原始思路 暴力求明显是不行的,我们把式子简化形式一下发现它可以 ...
- AcWing 874. 筛法求欧拉函数
#include<bits/stdc++.h> using namespace std; typedef long long ll; ; int primes[N],cnt; int ph ...
- C++模板:欧拉函数
单个欧拉函数 int eular(int n){ int ret=1,i; for(i=2;i*i<=n;i++) if(n%i==0){ n/=i,ret*=i-1; while(n%i==0 ...
- Farey Sequence (素筛欧拉函数/水)题解
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/ ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- 数学知识-欧拉函数&快速幂
欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...
- UVA 11424 GCD - Extreme (I) (欧拉函数+筛法)
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此 ...
随机推荐
- 数据库系统概论 SQL
--(一)创建教材学生-课程数据库 create database s_c go use s_c go --建立“学生”表Student,学号是主码,姓名取值唯一. CREATE TABLE Stud ...
- [Locked] Sparse Matrix Multiplication
Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...
- Linux 安全
Linux 安全 1.安装 使系统处于单独(或隔离)的网络中.以防止未受保护的系统连接到其它网络或互联网中受到可能的攻击 安装完成后将下面软件卸载 pump ...
- LibreOffice连接orcle 11g
1.安装java 2.安装JDBC 官网下载 复制到/usr/java/jdk1.8.0_111/jre/lib/ext文件下
- selenium webdriver启动IE浏览器失败的解决办法
通过selenium webdriver启动IE浏览器失败,报错:selenium.common.exceptions.WebDriverException: Message: Unexpected ...
- Struts2方法调用的三种方式
在Struts2中方法调用概括起来主要有三种形式 第一种方式:指定method属性 <action name="student" class="com.itmyho ...
- Android 省市县 三级联动(android-wheel的使用)[转]
转载:http://blog.csdn.net/lmj623565791/article/details/23382805 今天没事跟群里面侃大山,有个哥们说道Android Wheel这个控件,以为 ...
- 【剑指Offer学习】【面试题43 : n 个锻子的点数】
题目:把n个骰子扔在地上,全部骰子朝上一面的点数之和为s.输入n.打印出s 的全部可能的值出现的概率. 解题思路 解法一:基于通归求解,时间效率不够高. 先把n个骰子分为两堆:第一堆仅仅有一个.还有一 ...
- Linux - 标准输入转换为标准输出 代码(C)
标准输入转换为标准输出 代码(C) 本文地址:http://blog.csdn.net/caroline_wendy Linux能够使用getc()和putc(),读取和写入每个输入字符. 代码: / ...
- staticMetaObject
staticMetaObject : QObject 及其 子类 的静态属性成员. 定义如下: const QMetaObject staticMetaObject; QMetaObject 记录了 ...