题目相当于问1-n中最多能选出多少对不互素无交集的二元组,并要求方案
构造:将所有数放入其最小质因子对应的集合,若素数p所对应的集合元素个数为奇数且$p\ne 2$且$2p\le n$,那么就将$2p$从2对应的集合移到p对应的集合,最终每一个集合中选择$\frac{|S|}{2}$(下取整)对即可
关于这一构造的正确性证明:
1.合法性:素数p所对应的集合中的每一个元素都有公素因子p,因此两两不互素;同时每一个数最多只存在于一个集合,因此不会重复
2.最优性:首先对于$2p>n$的素数p和1都无法参与答案,那么剩余元素的最小质因子一定在$[2,\frac{n}{2}]$中,而通过构造中的调整一定可以使得$(2,\frac{n}{2}]$中的集合元素个数都为偶数,因此最多剩下1个数,不存在更多的匹配

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 vector<int>v,ans[N];
5 int E,t,n,p[N],mn[N],vis[N],bl[N];
6 int main(){
7 for(int i=2;i<N-4;i++){
8 if (!vis[i]){
9 p[++p[0]]=i;
10 mn[i]=i;
11 }
12 for(int j=1;(j<=p[0])&&(i*p[j]<N-4);j++){
13 vis[i*p[j]]=1;
14 mn[i*p[j]]=p[j];
15 if (i%p[j]==0)break;
16 }
17 }
18 scanf("%d",&t);
19 while (t--){
20 scanf("%d",&n);
21 for(int i=1;i<=n;i++)vis[i]=0;
22 for(int i=2;i<=n;i++){
23 vis[mn[i]]++;
24 bl[i]=mn[i];
25 }
26 for(int i=1;(i<=p[0])&&(p[i]<=n);i++)
27 if ((vis[p[i]]&1)&&(p[i]<=n/2))bl[2*p[i]]=p[i];
28 for(int i=1;i<=n;i++)ans[i].clear();
29 for(int i=2;i<=n;i++)ans[bl[i]].push_back(i);
30 int sum=0;
31 for(int i=2;i<=n;i++)sum+=ans[i].size()/2;
32 printf("%d\n",sum);
33 for(int i=1;(i<=p[0])&&(p[i]<=n);i++)
34 for(int j=0;j+1<ans[p[i]].size();j+=2)printf("%d %d\n",ans[p[i]][j],ans[p[i]][j+1]);
35 }
36 }
 

[nowcoder5669H]Harder Gcd Problem的更多相关文章

  1. 【算法系列学习】codeforces C. Mike and gcd problem

    C. Mike and gcd problem http://www.cnblogs.com/BBBob/p/6746721.html #include<iostream> #includ ...

  2. CF798 C. Mike and gcd problem

    /* CF798 C. Mike and gcd problem http://codeforces.com/contest/798/problem/C 数论 贪心 题意:如果一个数列的gcd值大于1 ...

  3. Codeforces Round #410 (Div. 2)C. Mike and gcd problem

    题目连接:http://codeforces.com/contest/798/problem/C C. Mike and gcd problem time limit per test 2 secon ...

  4. codeforces#410C Mike and gcd problem

    题目:Mike and gcd problem 题意:给一个序列a1到an ,如果gcd(a1,a2,...an)≠1,给一种操作,可以使ai和ai+1分别变为(ai+ai+1)和(ai-ai+1); ...

  5. Codeforces 798C. Mike and gcd problem 模拟构造 数组gcd大于1

    C. Mike and gcd problem time limit per test: 2 seconds memory limit per test: 256 megabytes input: s ...

  6. #410div2C. Mike and gcd problem

    C. Mike and gcd problem time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. Codeforces 798C - Mike and gcd problem(贪心+数论)

    题目链接:http://codeforces.com/problemset/problem/798/C 题意:给你n个数,a1,a2,....an.要使得gcd(a1,a2,....an)>1, ...

  8. FZU 2224 An exciting GCD problem(GCD种类预处理+树状数组维护)同hdu5869

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2224 同hdu5869 //#pragma comment(linker, "/STACK:1024 ...

  9. 【codeforces 798C】Mike and gcd problem

    [题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ...

随机推荐

  1. Java到底怎么学?

    你现在是不是想学Java,但很迷茫不知该从何下手,那么请认真看完这篇文章,希望对你有所帮助! 作为零基础刚刚接触Java的朋友们来说,我的建议还是先看视频,虽然有很多人说看视频学习慢,建议直接买优秀的 ...

  2. Schematics Tools(Schematics 工具)

    Schematics工具 # Process: 创建逻辑示意图 arcpy.CreateDiagram_schematics("", "", "&qu ...

  3. CF1082G Petya and Graph(最小割,最大权闭合子图)

    QWQ嘤嘤嘤 感觉是最水的一道\(G\)题了 顺便记录一下第一次在考场上做出来G qwqqq 题目大意就是说: 给你n个点,m条边,让你选出来一些边,最大化边权减点权 \(n\le 1000\) QW ...

  4. 常用的SQL查询思维/场景

    前言 现在大多数开发工作中,已经可以使用一些组件或框架提供的强大的条件构造器来完成查询数据了,虽然强大而且方便,但也还是存在很多业务场景需要实打实的编写传统SQL语句.特别一些测试.维护.问题排查的时 ...

  5. docker环境下搭建python3.6

    前言:当我们在一台电脑上搭建了python3.6的环境,下次换了个电脑或者换成linux的系统了又得重新搭建一次,设置环境变量,下载pip等操作.所以使用docker 一.安装python步骤: 1. ...

  6. pg_basebackup报错: pg_basebackup: incompatible server version 12.4

    pg_basebackup报错 今日从库复制主库data时,发现pg_basebackup无法使用,详情如下: 错误为:incompatible server version 12.4 [postgr ...

  7. Python语法1

    变量 命名规则 变量名必须是大小写英文字母.数字或下划线 _ 的组合,不能用数字开头,并且对大小写敏感 变量赋值 同一变量可以反复赋值,而且可以是不同类型的变量 i=2; i="name&q ...

  8. Alpha发布声明

    项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 Alpha-发布声明 我们是谁 删库跑路对不队 我们在做什么 题士 进度如何 进度总览 一.功能与特性 1. ...

  9. vs2010中使用命令行参数

    使用VS2010增加命令参数的时候老是不起作用,后面经过研究发现,所要增加的命令参数是一个相对文件路径,而默认的工作目录里面没有该文件,所以就没有找到,需要修改工作目录,这样命令行参数才能够起作用.

  10. cf13B Letter A(分类+简单计算几何,,)

    题意: 给三个线段(每个线段的两个端点的坐标),问这三个线段能否组成字母A. 组成字母A的条件: 1.两个线段有公共端点. 2.这两个线段夹角小于等于90度. 3.第三个线段的两个端点分别在这两个线段 ...