考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算。

我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度。

我们设\(f_{i,j}\)为\(i\)点合法删除向左延伸的最大长度。

\(
f_{i,j} =
\left\{
\begin{aligned}
&f_{i - 1,j} (a[i] = ')'\ )\\
&f_{i - 1,j - 1}(a[i] = ')'\ )\\
&f_{i - 1,j} + f_{i - 1 ,j - 1} (a[i] = '?'\ )\\
\end{aligned}
\right.
\)

设\(g_{i,j}\)为向右延伸,则有同样的转移。

\(ans = \sum_{i = 1}^n\sum_{j = 1}^j f_{i,j} * g_{i + 1,j} * j\)

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define N 2005
#define mod 998244353 char a[N]; ll n;
ll f[N][N],g[N][N]; int main(){
scanf("%s",a + 1);
n = strlen(a + 1);
f[0][0] = 1;
for(int i = 1;i <= n;++i){
if(a[i] == '(' || a[i] == '?')
for(int j = 1;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j - 1]) % mod;
if(a[i] == ')' || a[i] == '?')
for(int j = 0;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
}
g[n + 1][0] = 1;
for(int i = n;i >= 1;--i){
if(a[i] == ')' || a[i] == '?')
for(int j = 1;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j - 1]) % mod;
if(a[i] == '(' || a[i] == '?')
for(int j = 0;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j]) % mod;
}
ll ans = 0;
for(int i = 1;i <= n - 1;++i)
for(int j = 1;j <= n;++j)
ans = (ans + f[i][j] * g[i + 1][j] % mod * j % mod) % mod;
std::cout<<ans<<std::endl;
}

CF1264D1 Beautiful Bracket Sequence (easy version)的更多相关文章

  1. CF1264D2 Beautiful Bracket Sequence (hard version)

    考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...

  2. Numerical Sequence (easy version)

    http://codeforces.com/problemset/problem/1216/E1 E1. Numerical Sequence (easy version) time limit pe ...

  3. CF1264D2 Beautiful Bracket Sequence

    我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...

  4. Codeforces 1264D - Beautiful Bracket Sequence(组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...

  5. Ping-Pong (Easy Version)(DFS)

    B. Ping-Pong (Easy Version) time limit per test 2 seconds memory limit per test 256 megabytes input ...

  6. CF1225B1 TV Subscriptions (Easy Version)

    CF1225B1 TV Subscriptions (Easy Version) 洛谷评测传送门 题目描述 The only difference between easy and hard vers ...

  7. UESTC 1546 Bracket Sequence

                                        Bracket Sequence Time Limit: 3000MS   Memory Limit: 65536KB   64 ...

  8. CF#138 div 1 A. Bracket Sequence

    [#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...

  9. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. Python代码阅读(第21篇):将变量名称转换为蛇式命名风格

    Python 代码阅读合集介绍:为什么不推荐Python初学者直接看项目源码 本篇阅读的代码实现将变量名称转换为蛇式命名风格(snake case)的功能. 本篇阅读的代码片段来自于30-second ...

  2. CQL和SQL的CRUD操作比较

    数据进行CRUD操作时,CQL语句和SQL语句的异同之处. 1.建表 2.CRUD语句比较 3.总结 1.建表 在此之前先分别创建两张表,插入数据,用来测试然后进行比较 在SQL数据库里面创建表 在C ...

  3. springcloud (一)系统架构演变之路

    演变过程 从传统架构(单点应用)→分布式架构(以项目进行拆分)→SOA架构(面向服务架构)→微服务架构 1 传统架构 其实就是ssh架构或者ssm架构,属于单点应用,把整个开发业务模块都会在一个项目中 ...

  4. 软件案例分析——VS、VS Code

    软件案例分析--VS和VS Code 第一部分 调研,测评 一.使用10–30分钟这个软件的基本功能(请上传使用软件的照片) VS code Visual Studio 二.主要功能和目标用户有何不同 ...

  5. django HTML 数据处理

    一.介绍 dgango  HTML 对 各种数据类型数据的调用展示 的个人工作总结 二.数据处理 1.元祖数据   t1 =('a','b','c',) 示例:    {{ t1.0 }}    {{ ...

  6. Django 实现分页功能(django 2.2.7 python 3.7.5 )

    Django 自带名为 Paginator 的分页工具, 方便我们实现分页功能.本文就讲解如何使用 Paginator 实现分页功能. 一. Paginator Paginator 类的作用是将我们需 ...

  7. 更改mysql数据库根目录

    1,查看原根目录 2,然后关闭数据库服务 3,cp -r 源根目录到目的根目录 4,修改my.cnf文件定义的根目录位置到目的根目录 5,启动数据库

  8. 力扣 - 剑指 Offer 66. 构建乘积数组

    题目 剑指 Offer 66. 构建乘积数组 思路1 按照一般的思路就是将所有的相乘,然后除以每一位数字就是答案,但是题目要求我们不能使用除法,因此我们会想到每次遍历到每个数字的时候,在遍历一遍数组, ...

  9. The art of multipropcessor programming 读书笔记-3. 自旋锁与争用(2)

    本系列是 The art of multipropcessor programming 的读书笔记,在原版图书的基础上,结合 OpenJDK 11 以上的版本的代码进行理解和实现.并根据个人的查资料以 ...

  10. Swoft+Docker

    Docker 以下纯属个人理解: Docker就是一种虚拟机,将环境打包成镜像,等于做了一个Linux系统裁剪. 镜像就是我们安装系统的镜像,里面包含了你的代码和环境. 容器就是一个虚拟机,你可以用一 ...