CF1264D1 Beautiful Bracket Sequence (easy version)
考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算。
我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度。
我们设\(f_{i,j}\)为\(i\)点合法删除向左延伸的最大长度。
\(
f_{i,j} =
\left\{
\begin{aligned}
&f_{i - 1,j} (a[i] = ')'\ )\\
&f_{i - 1,j - 1}(a[i] = ')'\ )\\
&f_{i - 1,j} + f_{i - 1 ,j - 1} (a[i] = '?'\ )\\
\end{aligned}
\right.
\)
设\(g_{i,j}\)为向右延伸,则有同样的转移。
\(ans = \sum_{i = 1}^n\sum_{j = 1}^j f_{i,j} * g_{i + 1,j} * j\)
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define N 2005
#define mod 998244353
char a[N];
ll n;
ll f[N][N],g[N][N];
int main(){
scanf("%s",a + 1);
n = strlen(a + 1);
f[0][0] = 1;
for(int i = 1;i <= n;++i){
if(a[i] == '(' || a[i] == '?')
for(int j = 1;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j - 1]) % mod;
if(a[i] == ')' || a[i] == '?')
for(int j = 0;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
}
g[n + 1][0] = 1;
for(int i = n;i >= 1;--i){
if(a[i] == ')' || a[i] == '?')
for(int j = 1;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j - 1]) % mod;
if(a[i] == '(' || a[i] == '?')
for(int j = 0;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j]) % mod;
}
ll ans = 0;
for(int i = 1;i <= n - 1;++i)
for(int j = 1;j <= n;++j)
ans = (ans + f[i][j] * g[i + 1][j] % mod * j % mod) % mod;
std::cout<<ans<<std::endl;
}
CF1264D1 Beautiful Bracket Sequence (easy version)的更多相关文章
- CF1264D2 Beautiful Bracket Sequence (hard version)
考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...
- Numerical Sequence (easy version)
http://codeforces.com/problemset/problem/1216/E1 E1. Numerical Sequence (easy version) time limit pe ...
- CF1264D2 Beautiful Bracket Sequence
我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...
- Codeforces 1264D - Beautiful Bracket Sequence(组合数学)
Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...
- Ping-Pong (Easy Version)(DFS)
B. Ping-Pong (Easy Version) time limit per test 2 seconds memory limit per test 256 megabytes input ...
- CF1225B1 TV Subscriptions (Easy Version)
CF1225B1 TV Subscriptions (Easy Version) 洛谷评测传送门 题目描述 The only difference between easy and hard vers ...
- UESTC 1546 Bracket Sequence
Bracket Sequence Time Limit: 3000MS Memory Limit: 65536KB 64 ...
- CF#138 div 1 A. Bracket Sequence
[#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...
- CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)
E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...
随机推荐
- Java(25)常见异常整理
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228418.html 博客主页:https://www.cnblogs.com/testero ...
- csp-j 复赛感想
作者:博客园小蔡编程 这次是作者第一次参加csp-j的比赛 内心还是挺激动的 今天,作者就来和大家讨论一下这次csp-j的学习心得和感想 T1 分糖果 这题描述看似复杂 其实就是一道求最大取模的题 L ...
- rocketmq优雅停机往事
1 时间追溯到2018年12月的某一天夜晚,那天我正准备上线一个需求完就回家,刚点下发布按钮,告警就响起,我擦,难道回不了家了?看着报错量只有一两个,断定只是偶发,稳住不要慌. 把剩下的机器发完,又出 ...
- 配置pyenv环境
git clone https://github.com/pyenv/pyenv.git ~/.pyenv echo 'export PYENV_ROOT="$HOME/.pyenv&quo ...
- OO课第三单元总结
一.梳理JML语言的理论基础 (1)理论基础 JMl的出现很大程度上一为了行为接口的规范化,用这种语言来指定特定模块的特定功能.JML的核心部分分为三个部分:前置条件(requires).后置条件(e ...
- spring cloud feign的基本使用
在上一节,我们学会了如何使用ribbon进行来进行服务之间的调用,但是那种需要通过RestTemplate来进行调用而且当参数比较多时,使用起来就比较麻烦.那么有没有一种调用远程方法(别的服务)就像调 ...
- 攻防世界 杂项14.Erik-Baleog-and-Olaf
下载解压后用notepad++打开 发现是一个PNG的图片文件,该后缀,再用Stegsolve打开看一下, 发现一个残缺二维码,果断在线PS补全 扫码得到flag flag{#justdiffit}
- 全志Tina_dolphin播放音视频裸流(h264,pcm)验证
最近在验证tina对裸流音视频的支持,主要指h264视频裸流及pcm音频裸流. 在原始sdk中有针对很多video和audio类型的parser,但就是没有找到pcm和h264的parser,所以需要 ...
- 重学STM32---(十)之CAN通信(二)
目录 前言 程序编写 主代码 测试 前言 CAN协议是非常难的,但是在stm32中却是简单的,只需要我们配置寄存器即可,,,即使这样,我在学习的时候也遇到了许多困难 程序编写 1.开时钟,不用说 ...
- PWN二进制漏洞学习指南
目录 PWN二进制漏洞学习指南 前言 前置技能 PWN概念 概述 发音 术语 PWN环境搭建 PWN知识学习途径 常见漏洞 安全机制 PWN技巧 PWN相关资源博客 Pwn菜鸡小分队 PWN二进制漏洞 ...