考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算。

我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度。

我们设\(f_{i,j}\)为\(i\)点合法删除向左延伸的最大长度。

\(
f_{i,j} =
\left\{
\begin{aligned}
&f_{i - 1,j} (a[i] = ')'\ )\\
&f_{i - 1,j - 1}(a[i] = ')'\ )\\
&f_{i - 1,j} + f_{i - 1 ,j - 1} (a[i] = '?'\ )\\
\end{aligned}
\right.
\)

设\(g_{i,j}\)为向右延伸,则有同样的转移。

\(ans = \sum_{i = 1}^n\sum_{j = 1}^j f_{i,j} * g_{i + 1,j} * j\)

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define N 2005
#define mod 998244353 char a[N]; ll n;
ll f[N][N],g[N][N]; int main(){
scanf("%s",a + 1);
n = strlen(a + 1);
f[0][0] = 1;
for(int i = 1;i <= n;++i){
if(a[i] == '(' || a[i] == '?')
for(int j = 1;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j - 1]) % mod;
if(a[i] == ')' || a[i] == '?')
for(int j = 0;j <= n;++j)
f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
}
g[n + 1][0] = 1;
for(int i = n;i >= 1;--i){
if(a[i] == ')' || a[i] == '?')
for(int j = 1;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j - 1]) % mod;
if(a[i] == '(' || a[i] == '?')
for(int j = 0;j <= n;++j)
g[i][j] = (g[i][j] + g[i + 1][j]) % mod;
}
ll ans = 0;
for(int i = 1;i <= n - 1;++i)
for(int j = 1;j <= n;++j)
ans = (ans + f[i][j] * g[i + 1][j] % mod * j % mod) % mod;
std::cout<<ans<<std::endl;
}

CF1264D1 Beautiful Bracket Sequence (easy version)的更多相关文章

  1. CF1264D2 Beautiful Bracket Sequence (hard version)

    考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...

  2. Numerical Sequence (easy version)

    http://codeforces.com/problemset/problem/1216/E1 E1. Numerical Sequence (easy version) time limit pe ...

  3. CF1264D2 Beautiful Bracket Sequence

    我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...

  4. Codeforces 1264D - Beautiful Bracket Sequence(组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...

  5. Ping-Pong (Easy Version)(DFS)

    B. Ping-Pong (Easy Version) time limit per test 2 seconds memory limit per test 256 megabytes input ...

  6. CF1225B1 TV Subscriptions (Easy Version)

    CF1225B1 TV Subscriptions (Easy Version) 洛谷评测传送门 题目描述 The only difference between easy and hard vers ...

  7. UESTC 1546 Bracket Sequence

                                        Bracket Sequence Time Limit: 3000MS   Memory Limit: 65536KB   64 ...

  8. CF#138 div 1 A. Bracket Sequence

    [#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...

  9. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. Java(24)常用API三

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228417.html 博客主页:https://www.cnblogs.com/testero ...

  2. XiaoXin 13Pro-Hackintosh 小新13pro崇尚极简的黑苹果双系统

    Lenovo XiaoXin-13-Pro-Hackintosh 关键词:Hackintosh XiaoXin EFI Tutorial Lenovo 以下提及的EFI及其他部分文件见github仓库 ...

  3. [no code][scrum meeting] Alpha 12

    项目 内容 会议时间 2020-04-19 会议主题 周总结会议 会议时长 45min 参会人员 全体成员 $( "#cnblogs_post_body" ).catalog() ...

  4. BUAA-软件工程第一次作业

    软件工程第一次作业 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 第1次个人作业 我在这个课程的目标 团队完成好的软件,并对自己作出规划 这个作 ...

  5. hystrix的dashboard和turbine监控

    当我们的应用程序使用了hystrix后,每个具体的hystrixCommand命令执行后都会产生一堆的监控数据,比如:成功数,失败数,超时数以及与之关联的线程池信息等.既然有了这些监控数据数据,那么我 ...

  6. [火星补锅] 非确定性有穷状态决策自动机练习题Vol.1 T3 第K大区间 题解

    前言: 老火星人了 解析: 很妙的二分题.如果没想到二分答案.. 很容易想到尝试用双指针扫一下,看看能不能统计答案. 首先,tail指针右移时很好处理,因为tail指针右移对区间最大值的影响之可能作用 ...

  7. 主集天线和分集天线——4G天线技术

    主集天线和分集天线 分集接收技术是一项主要的抗衰落技术,可以大大提高多径衰落信道传输下的可靠性,在实际的移动通信系统中,移动台常常工作在城市建筑群或其他复杂的地理环境中,而且移动的速度和方向是任意的. ...

  8. 攻防世界 杂项14.Erik-Baleog-and-Olaf

    下载解压后用notepad++打开 发现是一个PNG的图片文件,该后缀,再用Stegsolve打开看一下, 发现一个残缺二维码,果断在线PS补全 扫码得到flag flag{#justdiffit}

  9. [CSP-S2021] 廊桥分配

    链接: P7913 题意: 有 \(m_1\) 架飞机和 \(m_2\) 架飞机停在两个机场,每架飞机有到达和离开的时间,要将 \(n\) 个廊桥分给两个机场,每个廊桥同一时刻只能停一架飞机,需要最大 ...

  10. 在c中使用正则表达式

    今天学习编译原理的时候,用c写一个简易的文法识别器实验遇到了一个问题:要用正则表达式去识别正则文法里面的A->ω,A->Bω, 其中ω属于T的正闭包,也就是说我们对正则文法的产生式进行抽象 ...