[noi707]LP
(以下用$Sa=\sum_{j=1}^{i}xi\cdot ai$,Sb和Sc同理)
令f[i][x]表示前i个数,$Sa\le x\le Sb$时最小的Sc
考虑第i个数是否选择,可以得到递推式$f[i][x]=min(f[i-1][x],min(f[i-1][x-j])+ci)$(j满足$ai\le j\le bi$),这个东西用单调队列维护即可
(这个转移的正确性可以用充分和必要两方面来考虑,具体不证了)

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 #define oo 0x3f3f3f3f
5 int t,n,m,l,r,a[N],b[N],c[N],q[N*10],f[N][N*10];
6 int main(){
7 scanf("%d",&t);
8 while (t--){
9 scanf("%d%d",&n,&m);
10 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
11 for(int i=1;i<=n;i++)scanf("%d",&b[i]);
12 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
13 for(int i=1;i<=m;i++)f[0][i]=oo;
14 f[0][0]=0;
15 for(int i=1;i<=n;i++){
16 l=1;
17 r=0;
18 for(int j=0;j<=m;j++){
19 if (a[i]<=j){
20 while ((l<=r)&&(f[i-1][j]<=f[i-1][q[r]]))r--;
21 q[++r]=j-a[i];
22 }
23 while ((l<=r)&&(q[l]<j-b[i]))l++;
24 f[i][j]=f[i-1][j];
25 if (l<=r)f[i][j]=min(f[i][j],f[i-1][q[l]]+c[i]);
26 }
27 }
28 if (f[n][m]==oo)printf("IMPOSSIBLE!!!\n");
29 else printf("%d\n",f[n][m]);
30 }
31 }
[noi707]LP的更多相关文章
- 对偶理论、拉格朗日对偶问题、LP线性规划对偶性质
Lagrange 对偶问题 定义其的对偶问题: Lagrange函数 考虑线性规划问题 若取集合约束D={x|x≥0},则该线性规划问题的Lagrange函数为 线性规划的对偶问题为: 对偶定理原问题 ...
- [原创] 使用LP Wizard 10.5 制作 Allegro PCB封装
本文只讲述使用 Calculator 和 Wizard 功能制作封装,通常学会使用这种方法,通用的标准封装就都可以生成了.下面以一个简单的SOIC-8封装的芯片来说明软件使用方法. 第一步,查找相关d ...
- 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因
转自:彬彬有礼. 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因 http://blog.csdn.net/jbb0523/article/details/40268943 题目: ...
- 关于LP Wizard生成Allegro封装无焊盘的解决方案
最近在学Allegro,安装了软件后看网上说LP Wizard可以一键生成Allegro封装,就想去尝尝鲜.毕竟一直都是手动做封装,没怎么用过向导.但是按照网上教程用LP生成了一个封装,发现打开时没有 ...
- Linux基础命令---lp打印文件
lp lp指令用来打印文件,也可以修改存在的打印任务.使用该指令可以指定打印的页码.副本等. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.openSUSE.SU ...
- Lp空间
在数学中,Lp空间是由p次可积函数组成的空间:对应的ℓp空间是由p次可和序列组成的空间.它们有时叫做勒贝格空间,以昂利·勒贝格命名(Dunford & Schwartz 1958,III.3) ...
- 什么是VC、PE、LP、GP?
天使基金主要关注原创项目构思和小型初创项目,投资规模大多在300万元以下:风险投资关注初创时期企业长期投资,规模在1000万元以下:私募股权投资主要关注3年内可以上市的成熟型企业. VC即ventur ...
- LP线性规划求解 之 单纯形 算法
LP线性规划求解 之 单纯形 算法 认识-单纯形 核心: 顶点旋转 随机找到一个初始的基本可行解 不断沿着可行域旋转(pivot) 重复2,直到结果不能改进为止 案例-过程 以上篇的case2的松弛型 ...
- LP线性规划初识
认识LP 线性规划(Linear Programming) 特指目标函数和约束条件皆为线性的最优化问题. 目标函数: 多个变量形成的函数 约束条件: 由多个等式/不等式形成的约束条件 线性规划: 在线 ...
随机推荐
- 深入理解Java虚拟机之JVM内存布局篇
内存布局**** JVM内存布局规定了Java在运行过程中内存申请.分配.管理的策略,保证了JVM的稳定高效运行.不同的JVM对于内存的划分方式和管理机制存在部分差异.结合JVM虚拟机规范,一起来 ...
- maven配置下载包 解决SunCertPathBuilderException:unable to find valid certification path to requested target
解决 『SunCertPathBuilderException:unable to find valid certification path to requested target』 问题 ★ ...
- 每日总结:Java课堂测试第三阶段第二次优化 (四则运算) (2021.9.22)
package jisuan2; import java.util.*;import java.util.Scanner; public class xiaoxue { public static v ...
- Kubernetes Job Controller 原理和源码分析(一)
概述什么是 JobJob 入门示例Job 的 specPod Template并发问题其他属性 概述 Job 是主要的 Kubernetes 原生 Workload 资源之一,是在 Kubernete ...
- 成功在Caterpillar代码中插入事件对象-20200917
首先搞清楚了Caterpillar的solidity代码生成机制.Caterpillar分为Caterpillar Core和 executepanel两部分. executePanel是UI前端,用 ...
- SharkCTF2021 bybypass&baby_phpserialize题记
(国庆褪10天了 先水一篇) bybypass: payload:?anime_is_bae=hehellotherehoomanllotherehooman baby_phpserialize ro ...
- Java:重载和重写
Java:重载和重写 对 Java 中的 重载和重写 这个概念,做一个微不足道的小小小小结 重载 重载:编译时多态,同一个类中的同名的方法,参数列表不同,与返回值无关. 有以下几点: 方法名必须相同: ...
- Spring DeferredResult 异步请求
Spring DeferredResult 异步请求 一.背景 二.分析 三.实现要求 四.后端代码实现 五.运行结果 1.超时操作 2.正常操作 六.DeferredResult运行原理 六.注意事 ...
- 双堆DEAP
记录一道遇到的考研真题 特性分析: DEAP为一颗完全二叉树,左子树小堆,右子树大堆,故左右子树分别可以用l[].r[]数组存储,用m和n分别表示当前两完全二叉树的结点,左右子树高度差为1,且左子树的 ...
- Nginx(三):Linux环境(Ubuntu)下Nginx的安装
Nginx 是一位俄罗斯人 Igor Sysoev(伊戈尔·塞索斯夫)编写的一款高性能HTTP和反向代理服务器. Nginx 主要是有C编写的,安装Nginx需要GCC编译器(GNU Compiler ...