(以下用$Sa=\sum_{j=1}^{i}xi\cdot ai$,Sb和Sc同理)
令f[i][x]表示前i个数,$Sa\le x\le Sb$时最小的Sc
考虑第i个数是否选择,可以得到递推式$f[i][x]=min(f[i-1][x],min(f[i-1][x-j])+ci)$(j满足$ai\le j\le bi$),这个东西用单调队列维护即可
(这个转移的正确性可以用充分和必要两方面来考虑,具体不证了)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 #define oo 0x3f3f3f3f
5 int t,n,m,l,r,a[N],b[N],c[N],q[N*10],f[N][N*10];
6 int main(){
7 scanf("%d",&t);
8 while (t--){
9 scanf("%d%d",&n,&m);
10 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
11 for(int i=1;i<=n;i++)scanf("%d",&b[i]);
12 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
13 for(int i=1;i<=m;i++)f[0][i]=oo;
14 f[0][0]=0;
15 for(int i=1;i<=n;i++){
16 l=1;
17 r=0;
18 for(int j=0;j<=m;j++){
19 if (a[i]<=j){
20 while ((l<=r)&&(f[i-1][j]<=f[i-1][q[r]]))r--;
21 q[++r]=j-a[i];
22 }
23 while ((l<=r)&&(q[l]<j-b[i]))l++;
24 f[i][j]=f[i-1][j];
25 if (l<=r)f[i][j]=min(f[i][j],f[i-1][q[l]]+c[i]);
26 }
27 }
28 if (f[n][m]==oo)printf("IMPOSSIBLE!!!\n");
29 else printf("%d\n",f[n][m]);
30 }
31 }

[noi707]LP的更多相关文章

  1. 对偶理论、拉格朗日对偶问题、LP线性规划对偶性质

    Lagrange 对偶问题 定义其的对偶问题: Lagrange函数 考虑线性规划问题 若取集合约束D={x|x≥0},则该线性规划问题的Lagrange函数为 线性规划的对偶问题为: 对偶定理原问题 ...

  2. [原创] 使用LP Wizard 10.5 制作 Allegro PCB封装

    本文只讲述使用 Calculator 和 Wizard 功能制作封装,通常学会使用这种方法,通用的标准封装就都可以生成了.下面以一个简单的SOIC-8封装的芯片来说明软件使用方法. 第一步,查找相关d ...

  3. 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因

    转自:彬彬有礼. 压缩感知中的lp球:p范数最优化为什么总会导致一个稀疏的解的原因 http://blog.csdn.net/jbb0523/article/details/40268943 题目: ...

  4. 关于LP Wizard生成Allegro封装无焊盘的解决方案

    最近在学Allegro,安装了软件后看网上说LP Wizard可以一键生成Allegro封装,就想去尝尝鲜.毕竟一直都是手动做封装,没怎么用过向导.但是按照网上教程用LP生成了一个封装,发现打开时没有 ...

  5. Linux基础命令---lp打印文件

    lp lp指令用来打印文件,也可以修改存在的打印任务.使用该指令可以指定打印的页码.副本等. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.openSUSE.SU ...

  6. Lp空间

    在数学中,Lp空间是由p次可积函数组成的空间:对应的ℓp空间是由p次可和序列组成的空间.它们有时叫做勒贝格空间,以昂利·勒贝格命名(Dunford & Schwartz 1958,III.3) ...

  7. 什么是VC、PE、LP、GP?

    天使基金主要关注原创项目构思和小型初创项目,投资规模大多在300万元以下:风险投资关注初创时期企业长期投资,规模在1000万元以下:私募股权投资主要关注3年内可以上市的成熟型企业. VC即ventur ...

  8. LP线性规划求解 之 单纯形 算法

    LP线性规划求解 之 单纯形 算法 认识-单纯形 核心: 顶点旋转 随机找到一个初始的基本可行解 不断沿着可行域旋转(pivot) 重复2,直到结果不能改进为止 案例-过程 以上篇的case2的松弛型 ...

  9. LP线性规划初识

    认识LP 线性规划(Linear Programming) 特指目标函数和约束条件皆为线性的最优化问题. 目标函数: 多个变量形成的函数 约束条件: 由多个等式/不等式形成的约束条件 线性规划: 在线 ...

随机推荐

  1. Serverless 如何在阿里巴巴实现规模化落地?

    作者 | 赵庆杰(卢令) 来源 | Serverless 公众号 一.Serverless 规模化落地集团的成果 2020 年,我们在 Serverless 底层基建上做了非常大的升级,比如计算升级到 ...

  2. Python | 一键生成九宫格图片

    一键生成九宫格图片 首先我们准备几张图片: 将代码文件放在放置图片的地方,用软件打开: 点击运行,在当前目录下会生成一个文件夹: 打开新生成的文件夹: 打开对应图片的名称文件夹: 如果不想图片被分成9 ...

  3. 洛谷4755 Beautiful Pair (分治)

    题目描述 小D有个数列 \(a\),当一个数对 \((i,j)(i\le j)\) 满足\(a_i\)和\(a_j\)的积 不大于 \(a_i \cdots a_j\) 中的最大值时,小D认为这个数对 ...

  4. uoj279题目交流通道(dp)

    题目大意: 神犇星球有 \(n\) 座小城.对于任意两座小城 \(v,u\)\((v≠u)\),吉米多出题斯基想在 \(v,u\) 之间建立一个传送时间为 \(w(v,u)\)的无向传送通道,其中 \ ...

  5. 创建HTML文档

    目录 创建HTML文档 构筑基本的文档结构 DOCTYPE元素 DOCTYPE元素 代码清单1 使用DOCTYPE元素 html元素 html元素 代码清单2 使用html元素 head元素 head ...

  6. NXOpen.BlockStyler的一些用法

    关于BLOCK UI的一些控件的用法,本人曾经使用的代码,拿出来共享: Option Strict Off Imports NXOpen Imports NXOpen.BlockStyler Impo ...

  7. python flask1

    以这个服务端代码为例,简单了解一下flask的运用. 1.app = Flask(__name__)记住就好了 2.@app.route("/")记住就好了:注意括号里的是调用这个 ...

  8. centos7 配置ftp服务器搭建(匿名访问,以及本地登录)

    大家好,今天来给大家分享一个基于centos 7的ftp服务器搭建 实现功能:匿名访问,本地登录 查看系统版本: [root@localhost ~]# cat /etc/redhat-release ...

  9. opencv学习(一)——图像入门

    图像入门 一.读取图像 在opencv中使用cv.imread(filename, flags)函数读取图像.filename参数表示读取图像的路径.读取图像的路径应完整给出,且不能含有中文,否则在调 ...

  10. Ubuntu用apt安装MySQL

    这里以MySQL5.7为例. # 如果之前有安装旧版,先移除sudo apt-get --purge remove mysql-server mysql-client mysql-common # 安 ...