动态规划精讲(一)LC 最长递增子序列的个数
最长递增子序列的个数
给定一个未排序的整数数组,找到最长递增子序列的个数。
示例 1:
输入: [1,3,5,4,7]
输出: 2
解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。
示例 2:
输入: [2,2,2,2,2]
输出: 5
解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5。
思路:
思路
我们需要定义两个vector数组:
vector<int> dp(n,1): 表示以nums[i]结尾的LIS长度
vector<int> count(n,1): 表示以nums[i]结尾的LIS的组合的个数
这里两个数组全部初始化为1,显然当序列长度为1时,LIS的长度为1,并且所有LIS的个数至少为1(不可能为零)
两重循环遍历
第一重用i扫描(1 <= i < nums.size())
第二重用j扫描(0 <= j < i)
显然 j 永远小于 i
若要LIS成立,我们只要考虑nums[j] < nums[i]的情况,其他情况则不考虑
(1)当dp[j]+1 > dp[i]时,意味着我们第一次找到这个组合
(2)当dp[j]+1 == dp[i]时,意味着我们不是第一次找到这个组合
当我们遇到情况(1)时(dp[j]+1 > dp[i]),只需要将LIS的长度加一,并且将组合数设为与nums[j]一样即可
当我们遇到情况(2)时(dp[j]+1 == dp[i]),只需要将nums[j]的组合数添加上去即可
注意以上两种情况都是基于(nums[j] < nums[i])
最后我们返回所有LIS的所有组合数
class Solution {
public:
int findNumberOfLIS(vector<int>& nums) {
int n = nums.size();
if(n<=0) return n;
vector<int> dp(n, 1);
vector<int> count(n,1);
for(int i=1; i<n; i++) {
for(int j=0; j<i; j++) {
if(nums[j] < nums[i]) {
// 第一次找到
if(dp[j]+1 > dp[i]) {
dp[i] = dp[j] + 1;
count[i] = count[j];
// 再次找到
} else if(dp[j]+1 == dp[i]) {
count[i] += count[j];
}
}
}
}
// 最后的返回值应该是所有最大长度的所有count的总和
int max = *max_element(dp.begin(), dp.end());
int res = 0;
for(int i=0; i<n; i++) {
if(dp[i] == max)
res += count[i];
}
return res;
}
};
动态规划精讲(一)LC 最长递增子序列的个数的更多相关文章
- [Swift]LeetCode673. 最长递增子序列的个数 | Number of Longest Increasing Subsequence
Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: I ...
- Q673 最长递增子序列的个数
给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7] ...
- Leetcode 673.最长递增子序列的个数
最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[ ...
- Java实现 LeetCode 673 最长递增子序列的个数(递推)
673. 最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, ...
- 51Nod:1134 最长递增子序列
动态规划 修改隐藏话题 1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递 ...
- 动态规划 - 最长递增子序列(LIS)
最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...
- 【动态规划】拦截导弹_dilworth定理_最长递增子序列
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec 内存限制: 256 MB提交: 39 解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...
- 动态规划----最长递增子序列问题(LIS)
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...
- 算法之动态规划(最长递增子序列——LIS)
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai ...
随机推荐
- matplotlib.pyplot设置画布主题
import matplotlib.pyplot as plt # 定义一个画图函数 def sinplot(flip = 1): x = np.linspace(0,10,100) for i in ...
- system V信号量和Posix信号量
一.函数上的区别 信号量有两种实现:传统的System V信号量和新的POSIX信号量.它们所提供的函数很容易被区分:对于所有System V信号量函数,在它们的名字里面没有下划线.例如,应该是sem ...
- Android Hello World程序开发过程
按照Building Your First App,详细过程如下: 安装SDK(如果网速慢,需要用离线安装的方法,见笔记 离线安装Android SDK的方法 ): 采用命令行开发方法(不用装Ecli ...
- Required request body is missing-请求接口报错
一.问题由来 自己目前在做一个小程序的后台,已经写好了项目中的很多的接口,同时也在进行一些修改,比如添加拦截器,统一校验一个固定的参数是否正确. 在自己添加拦截器之前,这些接口都可以正常访问,可是在添 ...
- Python对系统数据进行采集监控——psutil
大家好,我是辰哥- 今天给大家介绍一个可以获取当前系统信息的库--psutil 利用psutil库可以获取系统的一些信息,如cpu,内存等使用率,从而可以查看当前系统的使用情况,实时采集这些信息可以达 ...
- noip模拟14
T1 离散化后线段树维护\(dp\),\(fi\)表示最小值为\(i\)时最多点亮多少个, 区间操作即可. Code #include<cstring> #include<cstdi ...
- vue+cesium初探(一) 加载cesium
参考文章1:https://www.cnblogs.com/laixiangran/p/4984522.html 参考文章2:https://blog.csdn.net/weixin_41940497 ...
- Socket 网络编程和IO模型
最近做了一个织机数据采集的服务器程序. 结构也非常简单,织机上的嵌入式设备,会通过Tcp 不停的往服务器发送一些即时数据.织机大改有个几十台到几百台不定把 刨去业务,先分析一下网络层的大概情况.每台织 ...
- BootstrapTable插件的使用 【转】
一.什么是Bootstrap-table? 在业务系统开发中,对表格记录的查询.分页.排序等处理是非常常见的,在Web开发中,可以采用很多功能强大的插件来满足要求,且能极大的提高开发效率,本随笔介绍这 ...
- Jmeter的默认字体和窗口的设置方法(一次改动,永久生效!!!)
因为每次打开jmeter看到的界面不如意,而且会影响工作发挥和效率,为了给大家带来良好的工作体验,为此给出最完美的设置方法,如下: 第一步: 找到jmeter所在目录--->bin---> ...