关于 DataX

DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间高效的数据同步功能。

如果想进一步了解 DataX ,请进一步查看 DataX 详细介绍 。

关于增量更新

DataX 支持多种数据库的读写, json 格式配置文件很容易编写, 同步性能很好, 通常可以达到每秒钟 1 万条记录或者更高, 可以说是相当优秀的产品, 但是缺乏对增量更新的内置支持。

其实增量更新非常简单, 只要从目标数据库读取一个最大值的记录, 可能是 DateTime 或者 RowVersion 类型, 然后根据这个最大值对源数据库要同步的表进行过滤, 然后再进行同步即可。

由于 DataX 支持多种数据库的读写, 一种相对简单并且可靠的思路就是:

  1. 利用 DataX 的 DataReader 去目标数据库读取一个最大值;
  2. 将这个最大值用 TextFileWriter 写入到一个 CSV 文件;
  3. 用 Shell 脚本来读取 CSV 文件, 并动态修改全部同步的配置文件;
  4. 执行修改后的配置文件, 进行增量同步。

接下来就用 shell 脚本来一步一步实现增量更新。

增量更新的 shell 实现

我的同步环境是从 SQLServer 同步到 PostgreSQL , 部分配置如下:

{
"job": {
"content": [
{
"reader": {
"name": "sqlserverreader",
"parameter": {
"username": "...",
"password": "...",
"connection": [
{
"jdbcUrl": [
"jdbc:sqlserver://[source_server];database=[source_db]"
],
"querySql": [
"SELECT DataTime, PointID, DataValue FROM dbo.Minutedata WHERE 1=1"
]
}
]
}
},
"writer": {
"name": "postgresqlwriter",
"parameter": {
"username": "...",
"password": "...",
"connection": [
{
"jdbcUrl": "jdbc:postgresql://[target_server]:5432/[target_db]",
"table": [
"public.minute_data"
]
}
],
"column": [
"data_time",
"point_id",
"data_value"
],
"preSql": [
"TRUNCATE TABLE @table"
]
}
}
}
],
"setting": { }
}
}

更多的配置可以参考 SqlServerReader 插件文档以及 PostgresqlWriter 插件文档

要实现增量更新, 首先要 PostgresqlReader 从目标数据库读取最大日期, 并用 TextFileWriter 写入到一个 csv 文件, 这一步我的配置如下所示:

{
"job": {
"content": [
{
"reader": {
"name": "postgresqlreader",
"parameter": {
"connection": [
{
"jdbcUrl": [
"jdbc:postgresql://[target_server]:5432/[target_db]"
],
"querySql": [
"SELECT max(data_time) FROM public.minute_data"
]
}
],
"password": "...",
"username": "..."
}
},
"writer": {
"name": "txtfilewriter",
"parameter": {
"dateFormat": "yyyy-MM-dd HH:mm:ss",
"fileName": "minute_data_max_time_result",
"fileFormat": "csv",
"path": "/scripts/",
"writeMode": "truncate"
}
}
}
],
"setting": { }
}
}

更多的配置可以看考 PostgresqlDataReader 插件文档以及 TextFileWriter 插件文档

有了这两个配置文件, 现在可以编写增量同步的 shell 文件, 内容如下:

#!/bin/bash
### every exit != 0 fails the script
set -e # 获取目标数据库最大数据时间,并写入一个 csv 文件
docker run --interactive --tty --rm --network compose --volume $(pwd):/scripts \
beginor/datax:3.0 \
/scripts/minute_data_max_time.json
if [ $? -ne 0 ]; then
echo "minute_data_sync.sh error, can not get max_time from target db!"
exit 1
fi
# 找到 DataX 写入的文本文件,并将内容读取到一个变量中
RESULT_FILE=`ls minute_data_max_time_result_*`
MAX_TIME=`cat $RESULT_FILE`
# 如果最大时间不为 null 的话, 修改全部同步的配置,进行增量更新;
if [ "$MAX_TIME" != "null" ]; then
# 设置增量更新过滤条件
WHERE="DataTime > '$MAX_TIME'"
sed "s/1=1/$WHERE/g" minute_data.json > minute_data_tmp.json
# 将第 45 行的 truncate 语句删除;
sed '45d' minute_data_tmp.json > minute_data_inc.json
# 增量更新
docker run --interactive --tty --rm --network compose --volume $(pwd):/scripts \
beginor/datax:3.0 \
/scripts/minute_data_inc.json
# 删除临时文件
rm ./minute_data_tmp.json ./minute_data_inc.json
else
# 全部更新
docker run --interactive --tty --rm --network compose --volume $(pwd):/scripts \
beginor/datax:3.0 \
/scripts/minute_data.json
fi

在上面的 shell 文件中, 使用我制作的 DataX docker 镜像, 使用命令 docker pull beginor/datax:3.0 即可获取该镜像, 当也可以修改这个 shell 脚本直接使用 datax 命令来执行。

为什么用 shell 来实现

因为 DataX 支持多种数据库的读写, 充分利用 DataX 读取各种数据库的能力, 减少了很多开发工作, 毕竟 DataX 的可靠性是很好的。

文章来源:https://beginor.github.io/2018/06/29/incremental-sync-with-datax.html

使用 DataX 增量同步数据(转)的更多相关文章

  1. 实现从Oracle增量同步数据到GreenPlum

    简介: GreenPlum是一个基于PostgreSQL数据库开发的MPP架构的数据库仓库,适用于OLAP系统,支持50PB(1PB=1000TB)级海量数据的存储和处理. 背景: 目前有一个业务是需 ...

  2. Clickhouse单机部署以及从mysql增量同步数据

    背景: 随着数据量的上升,OLAP一直是被讨论的话题,虽然druid,kylin能够解决OLAP问题,但是druid,kylin也是需要和hadoop全家桶一起用的,异常的笨重,再说我也搞不定,那只能 ...

  3. datax实例——全量、增量同步

    一.全量同步 本文以mysql -> mysql为示例: 本次测试的表为mysql的系统库-sakila中的actor表,由于不支持目的端自动建表,此处预先建立目的表: CREATE TABLE ...

  4. Rsync + Sersync 实现数据增量同步

    部分引用自:https://blog.csdn.net/tmchongye/article/details/68956808 一.什么是Rsync? Rsync(Remote Synchronize) ...

  5. MySQL数据实时增量同步到Kafka - Flume

    转载自:https://www.cnblogs.com/yucy/p/7845105.html MySQL数据实时增量同步到Kafka - Flume   写在前面的话 需求,将MySQL里的数据实时 ...

  6. orcale增量全量实时同步mysql可支持多库使用Kettle实现数据实时增量同步

    1. 时间戳增量回滚同步 假定在源数据表中有一个字段会记录数据的新增或修改时间,可以通过它对数据在时间维度上进行排序.通过中间表记录每次更新的时间戳,在下一个同步周期时,通过这个时间戳同步该时间戳以后 ...

  7. 数据源管理 | 基于DataX组件,同步数据和源码分析

    本文源码:GitHub·点这里 || GitEE·点这里 一.DataX工具简介 1.设计理念 DataX是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDF ...

  8. Logstash学习之路(四)使用Logstash将mysql数据导入elasticsearch(单表同步、多表同步、全量同步、增量同步)

    一.使用Logstash将mysql数据导入elasticsearch 1.在mysql中准备数据: mysql> show tables; +----------------+ | Table ...

  9. 实战!Spring Boot 整合 阿里开源中间件 Canal 实现数据增量同步!

    大家好,我是不才陈某~ 数据同步一直是一个令人头疼的问题.在业务量小,场景不多,数据量不大的情况下我们可能会选择在项目中直接写一些定时任务手动处理数据,例如从多个表将数据查出来,再汇总处理,再插入到相 ...

随机推荐

  1. .Net RabbitMQ实战指南——RabbitMQ相关概念介绍

    什么是消息中间件 消息(Message)是指在应用间传送的数据.消息可以非常简单,比如只包含文本字符串.JSON等,也可以很复杂,比如内嵌对象. 消息队列中间件(Message Queue Middl ...

  2. JAVA并发(5)-并发队列LinkedBlockingQueue的分析

    本文介绍LinkedBlockingQueue,这个队列在线程池中常用到.(请结合源码,看本文) 1. 介绍 LinkedBlockingQueue, 不支持null,基于单向链表的可选有界阻塞队列. ...

  3. 点云配准的端到端深度神经网络:ICCV2019论文解读

    点云配准的端到端深度神经网络:ICCV2019论文解读 DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration ...

  4. TensorRT宏碁自建云(BYOC, BuildYourOwnCloud)上集成

    TensorRT宏碁自建云(BYOC, BuildYourOwnCloud)上集成 这个PR增加了对分区.编译和运行TensorRT BYOC目标的支持. Building 有两个新的cmake标志: ...

  5. 远程服务调用RMI框架 演示,和底层原理解析

    远程服务调用RMI框架: 是纯java写的, 只支持java服务之间的远程调用,很简单, // 接口要继承 Remote接口 public interface IHelloService extend ...

  6. Spring Cloud08: Hystrix 容错机制与数据监控

    一.概述 容错机制是指的是在一个分布式系统中,每个微服务之间是相互调用的,并且他们之间相互依赖,而实际的运行情况中,可能会因为各种原因导致某个微服务不可用,那么依赖于这个微服务的其他微服务就可能出现响 ...

  7. P1522 [USACO2.4]牛的旅行 Cow Tours(Floyd)

    题目描述 Farmer John 的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer Joh ...

  8. selenium 隐式等待与显式等待

    1.隐式等待:driver.implicitly_wait() driver = webdriver.Chrome()driver.implicitly_wait(10)     #获取元素时最多会等 ...

  9. 对话Apache Hudi VP, 洞悉数据湖的过去现在和未来

    Apache Hudi是一个开源数据湖管理平台,用于简化增量数据处理和数据管道开发,该平台可以有效地管理业务需求,例如数据生命周期,并提高数据质量.Hudi的一些常见用例是记录级的插入.更新和删除.简 ...

  10. SpringCloud、Nginx高并发核心编程 【2020年11月新书 】

    文章太长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典极品 : 三大本< Java 高并发 三部曲 > 面试 + 大厂 + 涨薪必备 疯狂创客圈 经 ...