题目传送门

题目大意

给出一个 \(n\) 个点的序列 \(a_{1,2,...,n}\) ,问有多少对点对 \((i,j)\) 满足 \(a_i\times a_j\le a_k(i\le k\le j)\)。

\(n\le 10^5,1\le a_i\le 10^9\)

思路

话说为什么裸的笛卡尔树上分治可以骗到 \(90\) 分啊???

首先不难看出一个比较 naive 的做法,就是说我们可以考虑最大堆得笛卡尔树上的一个子树,如果左端点在左子树,右端点在右子树,那么最大值就是根,然后其实就是统计 \(\lfloor\frac{k}{a_i}\rfloor\) ,其中 \(k\) 表示根的值。具体实现就是直接摊平然后当序列搞就好了,不过你可以发现其实不需要摊平。

然后我们发现这样做时间复杂度在单调的序列中时间复杂度就会降到 \(\Theta(n^2\log n)\),我们考虑启发式合并,即是说我们每次选较小的子树进行查询,然后区间小于等于某个数的个数可以使用主席树进行维护。

考虑这样做的时间复杂度,我们考虑对于每个点的查询次数,可以想到,它作为最小值得时候爬树的时候每次子树大小都至少扩大一倍,于是最多就被访问到 \(\log n\) 次,所以总时间复杂度就是 \(\Theta(n\log^2 n)\) 。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define ll long long
#define MAXN 100005 char buf[1 << 21],*p1 = buf,*p2 = buf;
#define getchar() ((p1 == p2 && (p2 = (p1 = buf) + fread(buf,1,1 << 21,stdin))) ? EOF : *p1 ++)
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} ll ans;
int n,top,len,ls[MAXN],rs[MAXN],val[MAXN],tur[MAXN],sta[MAXN],root[MAXN]; void buildTree (){
for (Int i = 1;i <= n;++ i){
int tmp = top;
while (top && val[sta[top]] < val[i]) -- top;
if (top) rs[sta[top]] = i;
if (top < tmp) ls[i] = sta[top + 1];
sta[++ top] = i;
}
} struct Segment{
#define LOG 21
int cnt,sum[MAXN * LOG],ls[MAXN * LOG],rs[MAXN * LOG];
void modify (int &x,int y,int l,int r,int pos){
x = ++ cnt,sum[x] = sum[y] + 1,ls[x] = ls[y],rs[x] = rs[y];
if (l == r) return ;
int mid = (l + r) >> 1;
if (pos <= mid) modify (ls[x],ls[y],l,mid,pos);
else modify (rs[x],rs[y],mid + 1,r,pos);
}
int query (int x,int l,int r,int tl,int tr){
if (!x || (l >= tl && r <= tr)) return sum[x];
int mid = (l + r) >> 1,res = 0;
if (tl <= mid) res += query (ls[x],l,mid,tl,tr);
if (tr > mid) res += query (rs[x],mid + 1,r,tl,tr);
return res;
}
int query (int l,int r,int tl,int tr){
return query (root[r],1,len,tl,tr) - query (root[l - 1],1,len,tl,tr);
}
}Tree; void divide (int x,int l,int r){
if (!ls[x] && !rs[x]) return ans += (tur[val[x]] == 1),void ();
if (x - l < r - x){
for (Int i = l;i <= x;++ i){
int ind = upper_bound (tur + 1,tur + len + 1,tur[val[x]] / tur[val[i]]) - tur - 1;
if (!ind) continue;
ans += Tree.query (x,r,1,ind);
}
}
else{
for (Int i = x;i <= r;++ i){
int ind = upper_bound (tur + 1,tur + len + 1,tur[val[x]] / tur[val[i]]) - tur - 1;
if (!ind) continue;
ans += Tree.query (l,x,1,ind);
}
}
if (ls[x]) divide (ls[x],l,x - 1);
if (rs[x]) divide (rs[x],x + 1,r);
} signed main(){
read (n);
for (Int i = 1;i <= n;++ i) read (val[i]),tur[i] = val[i];
sort (tur + 1,tur + n + 1),len = unique (tur + 1,tur + n + 1) - tur - 1;
for (Int i = 1;i <= n;++ i) val[i] = lower_bound (tur + 1,tur + len + 1,val[i]) - tur;
buildTree ();for (Int i = 1;i <= n;++ i) Tree.modify (root[i],root[i - 1],1,len,val[i]);
divide (sta[1],1,n),write (ans),putchar ('\n');
return 0;
}

题解 Beautiful Pair的更多相关文章

  1. 【题解】P4755 Beautiful Pair(启发式合并的思路+分治=启发式分治)

    [题解]P4755 Beautiful Pair upd: 之前一个first second烦了,现在AC了 由于之前是直接抄std写的,所以没有什么心得体会,今天自己写写发现 不知道为啥\(90\) ...

  2. 「LGR-049」洛谷7月月赛 D.Beautiful Pair

    「LGR-049」洛谷7月月赛 D.Beautiful Pair 题目大意 : 给出长度为 \(n\) 的序列,求满足 \(i \leq j\) 且 $a_i \times a_j \leq \max ...

  3. [luogu4755]Beautiful Pair

    [luogu4755]Beautiful Pair luogu 第一次写最大值分治感觉有点丑 每次找到最大值mid,扫小的一边,主席树查大的一边小于等于\(\frac{a[mid]}{a[i]}\)的 ...

  4. Luogu4755 Beautiful Pair 最值分治、主席树

    传送门 整天做一些模板题感觉药丸 设\(val_i\)表示第\(i\)个位置的值 看到区间最大值考虑最值分治.对于当前的区间\([l,r]\),找到区间最大值\(mid\),递归\([l,mid-1] ...

  5. P4755 Beautiful Pair (分治 + 主席树)

    题意:1e5的数组 计算有多少对 ai * aj <= max(ai ai+1...aj-1 aj) 题解:在处理这种涉及到区间极值的题时 好像是个套路分治 从级值中间分成两个区间 从区间短的那 ...

  6. 洛谷 P4755 - Beautiful Pair(主席树+分治+启发式优化)

    题面传送门 wssb,我紫菜 看到这类与最大值统计有关的问题可以很自然地想到分治,考虑对 \([l,r]\) 进行分治,求出对于所有 \(l\le x\le y\le r\) 的点对 \((x,y)\ ...

  7. luoguP4755 Beautiful Pair

    https://www.luogu.org/problemnew/show/P4755 考虑分治,在 [l, r] 区间中用线段树找到最大的一个点,处理经过它的可行数对的个数,统计个数可以离线树状数组 ...

  8. Luogu 4755 Beautiful Pair

    分治 + 主席树. 设$solve(l, r)$表示当前处理到$[l, r]$区间的情况,我们可以找到$[l, r]$中最大的一个数的位置$mid$,然后扫一半区间计算一下这个区间的答案. 注意,这时 ...

  9. P4755 Beautiful Pair

    题目 洛谷 做法 \(i≤x≤j,a[i]<\frac{a[x]}{a[j]}\) 考虑\(a[x]\)的贡献,单调栈预处理\(L,R\)能作为最大值的区间 枚举一端点,仅需另一端点满足条件即可 ...

随机推荐

  1. tensorflow summary demo with linear-model

    tf.summary + tensorboard 用来把graph图中的相关信息,如结构图.学习率.准确率.Loss等数据,写入到本地硬盘,并通过浏览器可视化之. 整理的代码如下: import te ...

  2. centos7 查看端口占用情况

    2021-08-02 1. 查看端口占用情况 # 查看 8088 端口占用情况 lsof -i tcp:8088 # 若提示没有 lsof 命令, yum 安装一下 yum -y install ls ...

  3. JavaWeb使用Filter进行字符编码过滤 预防web服务中文乱码

    JavaWeb使用Filter进行字符编码过滤 预防web服务中文乱码 准备条件:一个创建好的 JavaWeb 项目 步骤: 1.创建一个类并实现 Filter 接口 import javax.ser ...

  4. Python命名空间——locals()函数和globals()函数及局部赋值规则

    Python使用叫做命名空间的东西来记录变量的轨迹.命名空间只是一个 字典,它的键字就是变量名,字典的值就是那些变量的值.实际上,命名空间可以象Python的字典一样进行访问,一会我们就会看到. 在一 ...

  5. 学习Linux tar 命令:最简单也最困难

    摘要:在本文中,您将学习与tar 命令一起使用的最常用标志.如何创建和提取 tar 存档以及如何创建和提取 gzip 压缩的 tar 存档. 本文分享自华为云社区<Linux 中的 Tar 命令 ...

  6. K8S命令行工具——kubectl

    1.kubectl概述 2.kubectl命令的语法 例子: 3.kubectl子命令使用分类 (1)基础命令 (2)部署和集群管理命令 (3)故障和调试命令 (4)其他命令 4.kubectl命令例 ...

  7. Linux - last 命令(Mac 电脑)

    前言 为啥写这篇? 因为听 grep.sed 教程的时候有这个命令栗子 加上工作中,运维给我排查问题的时候也用到了,感觉挺重要,先了解为敬! 命令作用 显示用户和TTY的最后登录次数 这个是在 Mac ...

  8. openswan中DH算法说明

    Author       : Email         : vip_13031075266@163.com Date          : 2021.01.11 Copyright : 未经同意不得 ...

  9. 一篇文章搞懂Nginx

    Nginx 的产生 Nginx 同 Apache 一样都是一种 Web 服务器.基于 REST 架构风格,以统一资源描述符(Uniform Resources Identifier)URI 或者统一资 ...

  10. 如何让阿三 Windows 10、11 的恢复分区(Recovery Partition)恢复到 “盖茨” 模式

    如何将 Windows Server 2022 的恢复分区(Recovery Partition)移动到 C 盘之前,恢复 C 盘容量调整功能. 请访问原文链接:https://sysin.org/b ...