FFT&原根&NTT&MTT
FFT
核心过程:
原根
Definition
若 \(a\) 模 \(m\) 的阶等于 \(\varphi(m)\),则称 \(a\) 为模 \(m\) 的一个原根。\((a\in\mathbb{Z},m\in\mathbb{N^+})\)
Special Case
\(p=1004535809=2^{21}\times479+1,g=3\)
\(p=998244353=2^{23}\times7\times17+1,g=3 \leftarrow most \ important\)
\(p=469762049=2^{26}\times7+1,g=3\)
NTT
非常简单。
用原根代替FFT中的单位根,减小了常数、避免了精度误差而且方便好写。
适用条件:取模意义下求值且已知模数的原根。
MTT
如果NTT中模数的原根布吉岛且FFT中精度有问题,则MTT闪亮登场!
有如下几种:
FFT&原根&NTT&MTT的更多相关文章
- FFT/NTT/MTT学习笔记
FFT/NTT/MTT Tags:数学 作业部落 评论地址 前言 这是网上的优秀博客 并不建议初学者看我的博客,因为我也不是很了解FFT的具体原理 一.概述 两个多项式相乘,不用\(N^2\),通过\ ...
- FFT与NTT专题
先不管旋转操作,考虑化简这个差异值 $$begin{aligned}sum_{i=1}^n(x_i-y_i-c)^2&=sum_{i=1}^n(x_i-y_i)^2+nc^2-2csum_{i ...
- 多项式乘法,FFT与NTT
多项式: 多项式?不会 多项式加法: 同类项系数相加: 多项式乘法: A*B=C $A=a_0x^0+a_1x^1+a_2x^2+...+a_ix^i+...+a_{n-1}x^{n-1}$ $B=b ...
- FFT和NTT学习笔记_基础
FFT和NTT学习笔记 算法导论 参考(贺) http://picks.logdown.com/posts/177631-fast-fourier-transform https://blog.csd ...
- fft,ntt总结
一个套路:把式子推成卷积形式,然后用fft或ntt优化求解过程. fft的扩展性不强,不可以在fft函数里多加骚操作--DeepinC T1:多项式乘法 板子题 T2:快速傅立叶之二 另一个板子,小技 ...
- 【bzoj3992】[SDOI2015]序列统计 原根+NTT
题目描述 求长度为 $n$ 的序列,每个数都是 $|S|$ 中的某一个,所有数的乘积模 $m$ 等于 $x$ 的序列数目模1004535809的值. 输入 一行,四个整数,N.M.x.|S|,其中|S ...
- 多项式fft、ntt、fwt 总结
做了四五天的专题,但是并没有刷下多少题.可能一开始就对多项式这块十分困扰,很多细节理解不深. 最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的.多项式算法的过程就是把卷积做一种 ...
- [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...
- [FFT/NTT/MTT]总结
最近重新学了下卷积,简单总结一下,不涉及细节内容: 1.FFT 朴素求法:$Coefficient-O(n^2)-CoefficientResult$ FFT:$Coefficient-O(nlogn ...
随机推荐
- 刷题-力扣-1137. 第 N 个泰波那契数
1137. 第 N 个泰波那契数 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/n-th-tribonacci-number 著作权 ...
- java和js中for循环的区别
java中for循环,先执行语句后循环 for (int i=1;i<10;i++){ for(int b=1;b<=i;b++){ System.out.print(b+"*& ...
- Django分页组件——Paginator
from django.core.paginator import Paginator #导入Paginator objects = ['john','paul','george','ringo',' ...
- Centos7最小化系统安装_配置
本文总结了作者使用centos最小化安装时,碰到的问题和解决方案. 网络问题.作者使用虚拟机安装时,网卡并没有激活.操作: 1 cd /etc/sysconfig/network-script 2 v ...
- Vue 路由跳转报错 Error: Avoided redundant navigation to current location: "/XXX".
在router文件夹下的index.js中加入红色字体代码即可解决 import Vue from 'vue' import VueRouter from 'vue-router' Vue.use(V ...
- .NET 6 RC1 正式发布
昨天晚上微软发布了.NET 6的两个RC版本中的第一个版本,该版本将于11月正式发布,作为在开源MIT协议下整合所有不同的.NET开发模组件的开源跨平台实现.这是一个从2014年开始,持续多年的,以改 ...
- 除PerfDog之外,还有什么性能测试工具。
除PerfDog之外,还有什么性能测试工具. 高通的Snapdragon Profiler 下载地址:https://developer.qualcomm.com/software/snapdrago ...
- 谈谈Linux系统启动流程
@ 目录 大体流程分析 一.BIOS 1.1 BIOS简介 1.2 POST 二.BootLoader (GRUB) 2.1 What's MBR? 2.2 What's GRUB? 2.3 boot ...
- AspectJWeaver文件写入gadget详解和两种应用场景举例
目录 0 前言 1 环境 2 gadget解析 2.1 高版本Commons-Collections的防御措施 2.2 获取AspectJWeaver的调用链 2.3 gadget详解 3 两种应用场 ...
- 1.24学习总结——HTML常见标签
HTML 标签简写及全称 下表列出了 HTML 标签简写及全称: 标签 英文全称 中文说明 a Anchor 锚 abbr Abbreviation 缩写词 acronym Acronym 取首字母的 ...