AcWing1264. 动态求连续区间和 (线段树做法)
1、题目
给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b] 的连续和。
输入格式
第一行包含两个整数 n 和 m,分别表示数的个数和操作次数。
第二行包含 n 个整数,表示完整数列。
接下来 m 行,每行包含三个整数 k,a,b (k=0,表示求子数列[a,b]的和;k=1,表示第 a 个数加 b)。
数列从 1 开始计数。
输出格式
输出若干行数字,表示 k=0 时,对应的子数列 [a,b] 的连续和。
数据范围
1≤m≤100000,
1≤a≤b≤n
\]
输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
1 1 5
0 1 3
0 4 8
1 7 5
0 4 8
输出样例:
11
30
35
2、题意分析
1、知识点
考察线段树和树状数组的知识、线段树的关键在于建树和递归求和的过程。
3、代码
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, m;
int w[N];
struct Node
{
int l, r;
int sum;
}tr[4 * N];
void pushup(int u) // 更新和
{
tr[u].sum = tr[u << 1].sum + tr[u << 1 | 1].sum;
}
void build(int u, int l, int r) // 建立线段树
{
if(l == r) tr[u] = {l, r, w[r]};
else
{
tr[u] = {l, r};
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
}
int query(int u, int l, int r) // 查询[l, r]的值
{
if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;
int mid = tr[u].l + tr[u].r >> 1;
int sum = 0;
if(l <= mid) sum = query(u << 1, l, r);
if(r > mid) sum += query(u << 1 | 1, l, r);
return sum;
}
void modify(int u, int x, int v) // 将x的值修改为v
{
if(tr[u].l == tr[u].r) tr[u].sum += v;
else
{
int mid = tr[u].l + tr[u].r >> 1;
if(x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n ; i ++) scanf("%d", &w[i]);
build(1, 1, n); //建树
int k, a, b;
while(m --)
{
scanf("%d%d%d", &k, &a, &b);
if(k == 0) printf("%d\n", query(1, a, b));
else modify(1, a, b);
}
return 0;
}
AcWing1264. 动态求连续区间和 (线段树做法)的更多相关文章
- AcWing1264. 动态求连续区间和 (树状数组做法)
1.题目 给定 n 个数组成的一个数列,规定有两种操作,一是修改某个元素,二是求子数列 [a,b] 的连续和. 输入格式 第一行包含两个整数 n 和 m,分别表示数的个数和操作次数. 第二行包含 n ...
- 【BZOJ3295】动态逆序对(线段树,树状数组)
[BZOJ3295]动态逆序对(线段树,树状数组) 题面 Description 对于序列A,它的逆序对数定义为满足iAj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的 ...
- 指针-动态开点&合并线段树
一个知识点不在一道题里说是没有灵魂的 线段树是用来处理区间信息的咯 但是往往因为需要4倍空间让许多人退却,而动态开点的线段树就非常棒 仿佛只用2倍就可以咯 指针保存位置,即节点信息,是很舒适的,所以用 ...
- BZOJ 4636 (动态开节点)线段树
思路: 偷懒 懒得离散化 搞了个动态开节点的线段树 (其实是一样的--..) 注意会有a=b的情况 要判掉 //By SiriusRen #include <cstdio> #includ ...
- zoj 2112 Dynamic Rankings 动态第k大 线段树套Treap
Dynamic Rankings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/show ...
- Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)
题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...
- HDU2665 kth number 线段树做法
题意:求区间第k小 思路: 线段树 每个节点上保存 当前区间已经排序好的序列 (归并一下就好了嘛 复杂度 O(l)的) 这样建树的时空复杂度都是 O(nlogn)的 对于 每次询问 二分一个答案 在树 ...
- 【a703】求逆序对(线段树的解法)
Time Limit: 10 second Memory Limit: 2 MB 问题描述 给定一个序列a1,a2...an.如果存在i小于j 并且ai大于aj,那么我们称之为逆序对,求给定序列中逆序 ...
- luoguU60884 【模板】动态点分治套线段树
题目连接:https://www.luogu.org/problemnew/show/U60884 题意:有N个点,标号为1∼N,用N−1条双向带权通道连接,保证任意两个点能互相到达. Q次询问,问从 ...
随机推荐
- 【2020五校联考NOIP #8】狗
题面传送门 原题题号:Codeforces 883D 题意: 有 \(n\) 个位置,每个位置上要么有一条狗,要么有一根骨头,要么啥都没有. 现在你要给每个狗指定一个方向(朝左或朝右). 朝左的狗可以 ...
- 什么是总线、总线的类型、局部总线、局部总线类型和什么是接口方式?什么是IDE?什么是SCSI?
在安装电脑系统时,进行内核配置时涉及到各种总线类型,有必要了解一下什么是总线.总线的类型.局部总线.局部总线类型和接口方式. 1)总线总线是一组通信线.在机器内部, 各部件通过总线连接; 对于外部设备 ...
- 【Redis】过期键删除策略和内存淘汰策略
Redis 过期键策略和内存淘汰策略 目录 Redis 过期键策略和内存淘汰策略 设置Redis键过期时间 Redis过期时间的判定 过期键删除策略 定时删除 惰性删除 定期删除 Redis过期删除策 ...
- 使用dumi生成react组件库文档并发布到github pages
周末两天玩了下号称西湖区东半球最牛逼的react文档站点生成工具dumi,顺带结合github pages生成了react-uni-comps文档站, 一套弄下来,感觉真香,现在还只是浅尝,高级的特性 ...
- 用友低代码开发平台YonBuilder首次亮相DevRun开发者沙龙
2020年的今天,没有人会再质疑企业上云的必要性与价值所在.从高科技行业到传统领域,大大小小的企业都希望走在变革道路前列,通过企业云加快业务数字化转型,更好地维护和管理企业数据. 然而,大多数企业都很 ...
- linux 实用指令压缩和解压类
linux 实用指令压缩和解压类 目录 linux 实用指令压缩和解压类 gzip/gunzip指令(不常用) zip/unzip指令 tar指令(常用) gzip/gunzip指令(不常用) 说明 ...
- 『学了就忘』Linux文件系统管理 — 67、通过命令模式进行LVM分区
目录 1.物理卷管理 (1)准备硬盘或者分区 (2)建立物理卷 (3)查看物理卷 (3)删除物理卷 2.创建卷组 (1)建立卷组 (2)查看卷组 (3)增加卷组容量 (4)减小卷组容量 (5)删除卷组 ...
- 如何删除苹果电脑垃圾文件-7个高级技巧释放大量苹果Mac
硬盘空间用尽是一件很让人头疼的事情,尤其是MacBook Air等设备上的固态硬盘可用的储存空间很少.下面[微IT]为大家介绍7个高级技巧来释放大量的硬盘空间,当然这些高级技巧更改了系统功能和文件,必 ...
- C++福尔摩斯的约会
这道题的要求总结如下: 1.DAY 星期 大写字母:A B C D E F G2.HH 时 数字+大写字母 0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M ...
- redis安装与简单实用
1.在Linux上redis的安装时十分简单的: 第一步:wget http://download.redis.io/releases/redis-2.8.12.tar.gz 解压: tar zxvf ...