Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Learning. In Advances in Neural Information Processing Systems, 2020.

这篇文章提出了对比学习结合adversarial training的一个思路.

主要内容

对比学习的强大之处在于正负样本对的构造, 一个结合adversarial training的很自然的思路是, 将普通样本与其相对应的对抗样本作为一组正样本对. 令\(x \in \mathcal{X}\)为样本, \(t \in \mathcal{T}\)为一augmentation, 则\((x, t(x))\)便构成了一正样本对, 再假设有一组负样本\(\{x_{neg}\}\), 则

\[\mathcal{L}_{con} (x, t(x), \{x_{neg}\}) = -\log \frac{\exp (z^T z_{pos}/\tau)}{\exp (z^T z_{pos}/\tau)+\sum_{z_{neg}}\exp(z^Tz_{neg}/\tau)},
\]

其中\(z\)是经过标准化的特征, \(\tau\)是temperature. 很自然的, 我们可以通过上面的损失构造\(x\)的对抗样本\(x_{adv}\):

\[x_{adv} := \prod_{B(x;\epsilon)} (x+\alpha \cdot \mathrm{sign} (\nabla_{x_{adv}} \mathcal{L}_{con}(x, x_{adv}, \{x_{neg}\})).
\]

稍有不同的是, 作者实际采用的是利用\(\mathcal{L}_{con}(t(x), t'(x), \{x_{neg}\})\)来构建对抗样本, 最后的用于训练的损失是

\[\mathcal{L}_{RoCL} := \mathcal{L}_{con}(t(x), \{t'(x), t(x)_{adv}\}, \{t(x)_{neg}\}) \\
\mathcal{L}_{total}:= \mathcal{L}_{RoCL} + \lambda \mathcal{L}_{con}(t(x)^{adv},t'(x), \{t(x)_{neg}\}),
\]

多的项即希望对抗样本和其他样本区别开来.

注:

\[\mathcal{L}_{con} (x, \{t(x), t'(x)\}, \{x_{neg}\}) = -\log \frac{\sum_{z_{pos}}\exp (z^T z_{pos}/\tau)}{\sum_{z_{pos}}\exp (z^T z_{pos}/\tau)+\sum_{z_{neg}}\exp(z^Tz_{neg}/\tau)}.
\]

Linear Part

因为自监督只是单纯提取了特征, 一般用于下游的分类任务需要再训练一个线性分类器, 很自然的, 作者选择在训练下游分类器的时候同样使用adversarial training:

\[\arg \min_{\psi} \mathbb{E}_{(x, y) \sim \mathbb{D}} [\max_{\delta \in B(x, \epsilon)} \mathcal{L}_{ce}(\psi, x+\delta,y)] ,
\]

其中\(\psi\)为线性分类器\(l(\cdot)\)的的参数.

另外, 作者还融合的随机光滑的技巧, 即在估计的时候

\[S(x) = \arg \max_{c \in Y} \mathbb{E}_{t \in \mathcal{T}} (l_c(f(t(x)))=c),
\]

一般的随机光滑是对样本随机加噪声, 这里的随机光滑是随机选择augmentation, 这倒是很让人眼前一亮.

代码

原文代码

Adversarial Self-Supervised Contrastive Learning的更多相关文章

  1. 论文解读(ClusterSCL)《ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs》

    论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing ...

  2. Robust Pre-Training by Adversarial Contrastive Learning

    目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive ...

  3. Feature Distillation With Guided Adversarial Contrastive Learning

    目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distilla ...

  4. 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》

    论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...

  5. ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理

    本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...

  6. 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》

    论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...

  7. 论文解读(gCooL)《Graph Communal Contrastive Learning》

    论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW ...

  8. 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》

    论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...

  9. 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》

    1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...

随机推荐

  1. day04:Python学习笔记

    day04:Python学习笔记 1.算数运算符 1.算数运算符 print(10 / 3) #结果带小数 print(10 // 3) #结果取整数,不是四舍五入 print(10 % 3) #结果 ...

  2. Scala【json字符串和json对象互相转换】

    一.fastjson工具 pom依赖 <dependency> <groupId>com.alibaba</groupId> <artifactId>f ...

  3. html块 布局

    可通过<div>和<span>将html元素组合起来. Html块元素 大多数html元素被定义为块级元素或内联元素. 块级元素在浏览器显示时,通常会以新行来开始(和结束).例 ...

  4. 出现 CannotAcquireLockException 异常

    项目出现  CannotAcquireLockException异常 原因: 百度了一下,是由于 Spring 事务嵌套造成死锁 结合自己的, handleWithdraw 方法底层有调用 其他 se ...

  5. ubuntu qq/微信

    Ubuntu qq&微信安装/启动脚本. Docker 本脚本依赖Docker,需要提前安装好Docker环境.参考https://yeasy.gitbooks.io/docker_pract ...

  6. matplotlib subplot 多图合一

    1:第一种方法 # method1: subplot2grid ################# ''' 第一个参数(3, 3) 是把图分成3行3列 第二个参数是位置 (0, 0)表示从0行0列开始 ...

  7. Nginx配置正向代理

    目录 一.简介 二.配置 三.参数 一.简介 场景: 用于内网机器访问外网,就需要正向代理,类似VPN. 原理: A机器可以访问外网,而B,C,D机器只能内网,便可以设立正向代理,将B,C,D机器的访 ...

  8. 子组件dispatch导致其他页面刷新问题解决

    问题: 现在有一个页面,包含"项目基本要素"和"供应链管控要素"多个组件,其中一个组件有表单级联,通过产品类型的不同选取去调接口获得产品名称的下拉 调接口是通过 ...

  9. 01-gevent完成多任务

    gevent完成多任务 一.原理 gevent实现多任务并不是依靠多进程或是线程,执行的时候只有一个线程,在遇到堵塞的时候去寻找可以执行的代码.本质上是一种协程. 二.代码实现 import geve ...

  10. Axios的正确食用方法

    这里分享出我个人封装的一个axios,我会尽量每行注释,希望对大家有所帮助. 1. 安装 全局执行代码 npm install axios; 2. 编写全局axios文件(附件里有代码) 在src目录 ...