Adversarial Self-Supervised Contrastive Learning
概
这篇文章提出了对比学习结合adversarial training的一个思路.
主要内容
对比学习的强大之处在于正负样本对的构造, 一个结合adversarial training的很自然的思路是, 将普通样本与其相对应的对抗样本作为一组正样本对. 令\(x \in \mathcal{X}\)为样本, \(t \in \mathcal{T}\)为一augmentation, 则\((x, t(x))\)便构成了一正样本对, 再假设有一组负样本\(\{x_{neg}\}\), 则
\]
其中\(z\)是经过标准化的特征, \(\tau\)是temperature. 很自然的, 我们可以通过上面的损失构造\(x\)的对抗样本\(x_{adv}\):
\]
稍有不同的是, 作者实际采用的是利用\(\mathcal{L}_{con}(t(x), t'(x), \{x_{neg}\})\)来构建对抗样本, 最后的用于训练的损失是
\mathcal{L}_{total}:= \mathcal{L}_{RoCL} + \lambda \mathcal{L}_{con}(t(x)^{adv},t'(x), \{t(x)_{neg}\}),
\]
多的项即希望对抗样本和其他样本区别开来.
注:
\]
Linear Part
因为自监督只是单纯提取了特征, 一般用于下游的分类任务需要再训练一个线性分类器, 很自然的, 作者选择在训练下游分类器的时候同样使用adversarial training:
\]
其中\(\psi\)为线性分类器\(l(\cdot)\)的的参数.
另外, 作者还融合的随机光滑的技巧, 即在估计的时候
\]
一般的随机光滑是对样本随机加噪声, 这里的随机光滑是随机选择augmentation, 这倒是很让人眼前一亮.
代码
Adversarial Self-Supervised Contrastive Learning的更多相关文章
- 论文解读(ClusterSCL)《ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs》
论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing ...
- Robust Pre-Training by Adversarial Contrastive Learning
目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive ...
- Feature Distillation With Guided Adversarial Contrastive Learning
目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distilla ...
- 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》
论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...
- ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理
本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(gCooL)《Graph Communal Contrastive Learning》
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW ...
- 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...
- 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》
1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...
随机推荐
- mysql数据操作语言DML
插入insert 插入方式1 语法: insert into 表名(列名,....) values(值1,....) 说明: 1.插入的值的类型要与列的类型一致或兼容 2.可以为null的值:①列写了 ...
- Leetcode中的SQL题目练习(一)
595. Big Countries https://leetcode.com/problems/big-countries/description/ Description name contine ...
- 【leetcode】122.Best Time to Buy and Sell Stock II(股票问题)
You are given an integer array prices where prices[i] is the price of a given stock on the ith day. ...
- int是几位;short是几位;long是几位 负数怎么表示
其实可以直接通过stm32的仿真看到结果:(这里是我用keil进行的测试,不知道这种方法是否准确) 从上面看, char是8位 short是4*4=16位 int是8*4=32位 long是8* ...
- Spring的事务传播机制(通俗易懂)
概述 Spring的事务传播机制有7种,在枚举Propagation中有定义. 1.REQUIRED PROPAGATION_REQUIRED:如果当前没有事务,就创建一个新事务,如果当前存在事务,就 ...
- Linux基础命令---htpasswd创建密码文件
htpasswd htpasswd指令用来创建和更新用于基本认证的用户认证密码文件.htpasswd指令必须对密码文件有读写权限,否则会返回错误码. 此命令的适用范围:RedHat.RHEL.Ubun ...
- tomcat之nginx调度
# :安装nginx [root@nginx ~]# yum install nginx -y #配置 [root@nginx ~]# vim /etc/nginx/nginx.conf upstre ...
- Spring Boot with H2 Database
Learn to configure H2 database with Spring boot to create and use an in-memory database in runtime, ...
- spring Profile 为不同环境提供不同的配置支持
说明 Profile为在不同环境下使用不同的配置提供了支持(开发环境下的配置和生产环境下的配置肯定是不同的, 例如, 数据库的配置) . 在spring开发中用@Profile 注解使用来选择行配置系 ...
- Appium获取toast消息遇到的问题(一)
一.运行错误 Android获取toast,需要在参数里设置automationName:Uiautomator2 1 # 设置设备的信息 2 desired_caps = { 3 'platform ...