Adversarial Self-Supervised Contrastive Learning
概
这篇文章提出了对比学习结合adversarial training的一个思路.
主要内容
对比学习的强大之处在于正负样本对的构造, 一个结合adversarial training的很自然的思路是, 将普通样本与其相对应的对抗样本作为一组正样本对. 令\(x \in \mathcal{X}\)为样本, \(t \in \mathcal{T}\)为一augmentation, 则\((x, t(x))\)便构成了一正样本对, 再假设有一组负样本\(\{x_{neg}\}\), 则
\]
其中\(z\)是经过标准化的特征, \(\tau\)是temperature. 很自然的, 我们可以通过上面的损失构造\(x\)的对抗样本\(x_{adv}\):
\]
稍有不同的是, 作者实际采用的是利用\(\mathcal{L}_{con}(t(x), t'(x), \{x_{neg}\})\)来构建对抗样本, 最后的用于训练的损失是
\mathcal{L}_{total}:= \mathcal{L}_{RoCL} + \lambda \mathcal{L}_{con}(t(x)^{adv},t'(x), \{t(x)_{neg}\}),
\]
多的项即希望对抗样本和其他样本区别开来.
注:
\]
Linear Part
因为自监督只是单纯提取了特征, 一般用于下游的分类任务需要再训练一个线性分类器, 很自然的, 作者选择在训练下游分类器的时候同样使用adversarial training:
\]
其中\(\psi\)为线性分类器\(l(\cdot)\)的的参数.
另外, 作者还融合的随机光滑的技巧, 即在估计的时候
\]
一般的随机光滑是对样本随机加噪声, 这里的随机光滑是随机选择augmentation, 这倒是很让人眼前一亮.
代码
Adversarial Self-Supervised Contrastive Learning的更多相关文章
- 论文解读(ClusterSCL)《ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs》
论文信息 论文标题:ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs论文作者:Yanling Wang, Jing ...
- Robust Pre-Training by Adversarial Contrastive Learning
目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive ...
- Feature Distillation With Guided Adversarial Contrastive Learning
目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distilla ...
- 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》
论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...
- ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理
本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(gCooL)《Graph Communal Contrastive Learning》
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW ...
- 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...
- 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》
1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...
随机推荐
- day12 函数嵌套
day12 函数嵌套 一. args与kwargs def index(a,b,c): print(a,b,c) def wrapper(*args,**kwargs): # args=(1,2,3) ...
- 虚拟机中安装centos系统的详细过程
linux-centos的安装 检查电脑是否开启虚拟化,只有开启虚拟化才能安装虚拟机 新建虚拟机 鼠标点进去,选中红框所示,回车 登录: 输入默认用户名(超级管理员 root) 密码:安装时设置的密码
- 安全相关,xss
XSS XSS,即 Cross Site Script,中译是跨站脚本攻击:其原本缩写是 CSS,但为了和层叠样式表(Cascading Style Sheet)有所区分,因而在安全领域叫做 XSS. ...
- 案例 高级定时器和通用定时器产生pwm的区别 gd32和stm32
- RestTemplate的exchange()方法,解决put和delete请求拿不到返回值的问题
嗷嗷待哺的controller(被调用provider的controller方法) //测试get少量参数 @RequestMapping(value = "detailsGetD" ...
- oracle 存储过程及REF CURSOR的使用
基本使用方法及示例 1.基本结构: CREATE OR REPLACE PROCEDURE 存储过程名字 (参数1 IN NUMBER,参数2 IN NUMBER) AS 变量1 INTEGER := ...
- 【编程思想】【设计模式】【行为模式Behavioral】状态模式State
Python版 https://github.com/faif/python-patterns/blob/master/behavioral/state.py #!/usr/bin/env pytho ...
- 用oracle中的Row_Number实现分页
Row_Number实现分页 1:首先是 select ROW_NUMBER() over(order by id asc) as 'rowNumber', * from table1 生成带序号 ...
- linux 操作只读变量
由于该操作需要用到 gdb,所以需要先 安装好 gdb 1. 查询是否有gdb: 2. 如果没有,需要先执行 yum install gdb 命令进行安装 3. 定义 只读变量 abc 并打印值: a ...
- python pandas 中文件的读写——read_csv()读取文件
read_csv()读取文件1.python读取文件的几种方式read_csv 从文件,url,文件型对象中加载带分隔符的数据.默认分隔符为逗号read_table 从文件,url,文件型对象中加载带 ...