决策树的概念其实不难理解,下面一张图是某女生相亲时用到的决策树:

基本上可以理解为:一堆数据,附带若干属性,每一条记录最后都有一个分类(见或者不见),然后根据每种属性可以进行划分(比如年龄是>30还是<=30),这样构造出来的一棵树就是我们所谓的决策树了,决策的规则都在节点上,通俗易懂,分类效果好。

那为什么跟节点要用年龄,而不是长相?这里我们在实现决策树的时候采用的是ID3算法,在选择哪个属性作为节点的时候采用信息论原理,所谓的信息增益。信息增益指原有数据集的熵-按某个属性分类后数据集的熵。信息增益越大越好(说明按某个属性分类后比较纯),我们会选择使得信息增益最大的那个属性作为当层节点的标记,再进行递归构造决策树。

首先我们构造数据集:

def createDataSet():
dataSet = [[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
features = ['no surfacing','flippers']
return dataSet,features

构造决策树:(采用python字典来递归构造,一些代码看看就能看懂)

def treeGrowth(dataSet,features):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0])==len(classList):
return classList[0]
if len(dataSet[0])==1:# no more features
return classify(classList) bestFeat = findBestSplit(dataSet)#bestFeat is the index of best feature
bestFeatLabel = features[bestFeat]
myTree = {bestFeatLabel:{}}
featValues = [example[bestFeat] for example in dataSet]
uniqueFeatValues = set(featValues)
del (features[bestFeat])
for values in uniqueFeatValues:
subDataSet = splitDataSet(dataSet,bestFeat,values)
myTree[bestFeatLabel][values] = treeGrowth(subDataSet,features)
return myTree

当没有多余的feature,但是剩下的样本不完全是一样的类别是,采用出现次数多的那个类别:

def classify(classList):
'''
find the most in the set
'''
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount[vote] += 1
sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]

寻找用于分裂的最佳属性:(遍历所有属性,算信息增益)

def findBestSplit(dataset):
numFeatures = len(dataset[0])-1
baseEntropy = calcShannonEnt(dataset)
bestInfoGain = 0.0
bestFeat = -1
for i in range(numFeatures):
featValues = [example[i] for example in dataset]
uniqueFeatValues = set(featValues)
newEntropy = 0.0
for val in uniqueFeatValues:
subDataSet = splitDataSet(dataset,i,val)
prob = len(subDataSet)/float(len(dataset))
newEntropy += prob*calcShannonEnt(subDataSet)
if(baseEntropy - newEntropy)>bestInfoGain:
bestInfoGain = baseEntropy - newEntropy
bestFeat = i
return bestFeat

选择完分裂属性后,就行数据集的分裂:

def splitDataSet(dataset,feat,values):
retDataSet = []
for featVec in dataset:
if featVec[feat] == values:
reducedFeatVec = featVec[:feat]
reducedFeatVec.extend(featVec[feat+1:])
retDataSet.append(reducedFeatVec)
return retDataSet

计算数据集的熵:

def calcShannonEnt(dataset):
numEntries = len(dataset)
labelCounts = {}
for featVec in dataset:
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0 for key in labelCounts:
prob = float(labelCounts[key])/numEntries
if prob != 0:
shannonEnt -= prob*log(prob,2)
return shannonEnt

下面根据上面构造的决策树进行数据的分类:

def predict(tree,newObject):
while isinstance(tree,dict):
key = tree.keys()[0]
tree = tree[key][newObject[key]]
return tree if __name__ == '__main__':
dataset,features = createDataSet()
tree = treeGrowth(dataset,features)
print tree
print predict(tree,{'no surfacing':1,'flippers':1})
print predict(tree,{'no surfacing':1,'flippers':0})
print predict(tree,{'no surfacing':0,'flippers':1})
print predict(tree,{'no surfacing':0,'flippers':0})

结果如下:

决策树是这样的:

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

四个预测:

yes
no
no
no

和给定的数据集分类一样(预测的数据是从给定数据集里面抽取的,当然一般数据多的话,会拿一部分做训练数据,剩余的做测试数据)

归纳一下ID3的优缺点:

优点:实现比较简单,产生的规则如果用图表示出来的话,清晰易懂,分类效果好

缺点:只能处理属性值离散的情况(连续的用C4.5),在选择最佳分离属性的时候容易选择那些属性值多的一些属性。

决策树之ID3算法实现(python)的更多相关文章

  1. 机器学习之决策树(ID3)算法与Python实现

    机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型:他代表的是对象属性与对象值之间的一种映射关系.树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每 ...

  2. 【Machine Learning】决策树之ID3算法 (2)

    决策树之ID3算法 Content 1.ID3概念 2.信息熵 3.信息增益 Information Gain 4. ID3 bias 5. Python算法实现(待定) 一.ID3概念 ID3算法最 ...

  3. 决策树之ID3算法

    一.决策树之ID3算法简述 1976年-1986年,J.R.Quinlan给出ID3算法原型并进行了总结,确定了决策树学习的理论.这可以看做是决策树算法的起点.1993,Quinlan将ID3算法改进 ...

  4. 机器学习笔记----- ID3算法的python实战

    本文申明:本文原创,如有转载请申明.数据代码来自实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. Hell ...

  5. 鹅厂优文 | 决策树及ID3算法学习

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~. 作者:袁明凯|腾讯IEG测试开发工程师 决策树的基础概念 决策树是一种用树形结构来辅助行为研究.决策分析以及机器学习的方式,是机器学习中的 ...

  6. 【Machine Learning·机器学习】决策树之ID3算法(Iterative Dichotomiser 3)

    目录 1.什么是决策树 2.如何构造一棵决策树? 2.1.基本方法 2.2.评价标准是什么/如何量化评价一个特征的好坏? 2.3.信息熵.信息增益的计算 2.4.决策树构建方法 3.算法总结 @ 1. ...

  7. 简单易学的机器学习算法——决策树之ID3算法

    一.决策树分类算法概述     决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类.例如对于如下数据集 (数据集) 其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是 ...

  8. 机器学习-决策树之ID3算法

    概述 决策树(Decision Tree)是一种非参数的有监督学习方法,它是一种树形结构,所以叫决策树.它能够从一系列有特征和标签的数据中总结出决策规则,并用树状图的结构来呈现这些规则,以解决分类和回 ...

  9. [置顶] ID3算法的python实现

    这篇文章的内容接着http://blog.csdn.net/xueyunf/article/details/9214727的内容,所有还有部分函数在http://blog.csdn.net/xueyu ...

随机推荐

  1. cobol语言基础培训教程

    COBOL 是Common Business Oriented Language 的缩写.它不仅是商业数据处理的理想语言,而且广泛用于数据管理领域,因此COBOL 语言也被称为”用于管理的语言”. 一 ...

  2. Leetcode:linked_list_cycle

    一.     题目 给定一个链表.确定它是否有一个环.不使用额外的空间? 二.     分析 1. 空链表不成环 2. 一个节点自环 3. 一条链表完整成环 思路:使用两个指针,一个每次往前走2步,一 ...

  3. 20个经典bootsrtap后台html站点模板推荐

    今天为大家推荐20款不同风格的Bootstrap后台管理模板,每一款都经典可用,能预览和下载,保证让你挑得眼花缭乱. 1,Simpli flag蓝色 Simpli Flat蓝色管理模板是一款採用Fla ...

  4. unity3d 学习笔记(一)

    操作:按下shit 点击坐标轴中心 切换透视图 动画烘焙的概念:相当于把原来的控制器动画或者IK(骨骼)动画所有塌陷为逐帧动画,导出的时候必须选这一项 着色器:从技术的角度来看,着色器是渲染器的一个部 ...

  5. Ubuntu 12.04设置打开远程桌面登录1

    teamviewer_linux.deb sudo dpkg --install teamviewer_linux.deb

  6. 安装centos6.3

    废话少说,今天安装镜像文件.版本为centos6.3 1.首先,我们已经创建了一个空的虚拟机,此时,打开虚拟机,选择的镜像文件,点击ok自己下载 2.点击绿色的三角箭头,你会看到下面页面.(如果报错T ...

  7. Hacker(18)----了解Windows系统漏洞

    一.WinXP中的漏洞 在WinXP中,常见的漏洞主要有UPNP服务漏洞.帮助与支持中心漏洞.压缩文件夹漏洞.服务拒绝漏洞.RDP漏洞以及热键漏洞. 1.UPNP服务漏洞 漏洞描述:UPNP(Univ ...

  8. python - 类成员修饰符

    在java,c#类的成员修饰符包括,公有.私有.程序集可用的.受保护的. 对于python来说,只有两个成员修饰符:公有成员,私有成员 成员修饰符是来修饰谁呢?当然是修饰成员了.那么python类的成 ...

  9. SearchFlight_Joker

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. 简单JS多级下拉框无刷新

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...